拉普拉斯演替估计量和m统计量。

IF 2.1 4区 数学 Q1 STATISTICS & PROBABILITY
American Statistician Pub Date : 2025-08-01 Epub Date: 2025-02-25 DOI:10.1080/00031305.2024.2448430
Eugene Demidenko
{"title":"拉普拉斯演替估计量和m统计量。","authors":"Eugene Demidenko","doi":"10.1080/00031305.2024.2448430","DOIUrl":null,"url":null,"abstract":"<p><p>The classic formula for estimating the binomial probability as the proportion of successes contradicts common sense for extreme probabilities when the event never occurs or occurs every time. Laplace's law of succession estimator, one of the first applications of Bayesian statistics, has been around for over 250 years and resolves the paradoxes, although rarely discussed in modern statistics texts. This work aims to introduce a new theory for exact optimal statistical inference using Laplace's law of succession estimator as a motivating example. We prove that this estimator may be viewed from a different theoretical perspective as the limit point of the short confidence interval on the double-log scale when the confidence level approaches zero. This motivating example paves the road to the definition of an estimator as the inflection point on the cumulative distribution function as a function of the parameter given the observed statistic. This estimator has the maximum infinitesimal probability of the coverage of the unknown parameter and, therefore, is called the maximum concentration (MC) estimator as a part of a more general M-statistics theory. The new theory is illustrated with exact optimal confidence intervals for the normal standard deviation and the respective MC estimators.</p>","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"79 3","pages":"311-319"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12333967/pdf/","citationCount":"0","resultStr":"{\"title\":\"Laplace's law of succession estimator and M-statistics.\",\"authors\":\"Eugene Demidenko\",\"doi\":\"10.1080/00031305.2024.2448430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The classic formula for estimating the binomial probability as the proportion of successes contradicts common sense for extreme probabilities when the event never occurs or occurs every time. Laplace's law of succession estimator, one of the first applications of Bayesian statistics, has been around for over 250 years and resolves the paradoxes, although rarely discussed in modern statistics texts. This work aims to introduce a new theory for exact optimal statistical inference using Laplace's law of succession estimator as a motivating example. We prove that this estimator may be viewed from a different theoretical perspective as the limit point of the short confidence interval on the double-log scale when the confidence level approaches zero. This motivating example paves the road to the definition of an estimator as the inflection point on the cumulative distribution function as a function of the parameter given the observed statistic. This estimator has the maximum infinitesimal probability of the coverage of the unknown parameter and, therefore, is called the maximum concentration (MC) estimator as a part of a more general M-statistics theory. The new theory is illustrated with exact optimal confidence intervals for the normal standard deviation and the respective MC estimators.</p>\",\"PeriodicalId\":50801,\"journal\":{\"name\":\"American Statistician\",\"volume\":\"79 3\",\"pages\":\"311-319\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12333967/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Statistician\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00031305.2024.2448430\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Statistician","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00031305.2024.2448430","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

估计二项概率的经典公式是成功的比例,当事件从未发生或每次都发生时,这与极端概率的常识相矛盾。拉普拉斯演替估计律是贝叶斯统计的最早应用之一,它已经存在了250多年,解决了这些悖论,尽管在现代统计文献中很少讨论。本文以拉普拉斯演替估计器为例,介绍了一种新的精确最优统计推断理论。我们证明了这个估计量可以从另一个理论角度看作是当置信水平趋近于零时,双对数尺度上短置信区间的极限点。这个鼓舞人心的例子为估计量的定义铺平了道路,估计量是累积分布函数的拐点,是给定观察到的统计量的参数的函数。该估计量具有未知参数覆盖的最大无穷小概率,因此,作为更一般的m统计理论的一部分,称为最大浓度(MC)估计量。新理论用正态标准差的精确最优置信区间和各自的MC估计来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laplace's law of succession estimator and M-statistics.

The classic formula for estimating the binomial probability as the proportion of successes contradicts common sense for extreme probabilities when the event never occurs or occurs every time. Laplace's law of succession estimator, one of the first applications of Bayesian statistics, has been around for over 250 years and resolves the paradoxes, although rarely discussed in modern statistics texts. This work aims to introduce a new theory for exact optimal statistical inference using Laplace's law of succession estimator as a motivating example. We prove that this estimator may be viewed from a different theoretical perspective as the limit point of the short confidence interval on the double-log scale when the confidence level approaches zero. This motivating example paves the road to the definition of an estimator as the inflection point on the cumulative distribution function as a function of the parameter given the observed statistic. This estimator has the maximum infinitesimal probability of the coverage of the unknown parameter and, therefore, is called the maximum concentration (MC) estimator as a part of a more general M-statistics theory. The new theory is illustrated with exact optimal confidence intervals for the normal standard deviation and the respective MC estimators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Statistician
American Statistician 数学-统计学与概率论
CiteScore
3.50
自引率
5.60%
发文量
64
审稿时长
>12 weeks
期刊介绍: Are you looking for general-interest articles about current national and international statistical problems and programs; interesting and fun articles of a general nature about statistics and its applications; or the teaching of statistics? Then you are looking for The American Statistician (TAS), published quarterly by the American Statistical Association. TAS contains timely articles organized into the following sections: Statistical Practice, General, Teacher''s Corner, History Corner, Interdisciplinary, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信