便携式低场系统的多波段快速自旋回波。

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Philip K Lee, Yueqi Qiu, Changyue Wang, Zhiyong Zhang
{"title":"便携式低场系统的多波段快速自旋回波。","authors":"Philip K Lee, Yueqi Qiu, Changyue Wang, Zhiyong Zhang","doi":"10.1002/mrm.70036","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To improve the SNR efficiency of Fast Spin Echo (FSE) using RF-encoded multiband imaging and to develop techniques that correct artifacts from non-Carr-Purcell-Meiboom-Gill (CPMG) magnetization arising from system imperfections.</p><p><strong>Methods: </strong>Optimal refocusing pulse <math> <semantics><mrow><mn>0</mn> <mo>-</mo> <mi>π</mi></mrow> <annotation>$$ 0-\\pi $$</annotation></semantics> </math> band phase modulations that satisfy the CPMG condition were calculated for different multiband factors. Fast recovery was used to enhance T2 contrast. Quadratic phase refocusing pulses, phase encode and slice select gradient reshaping, and zeroth-order phase calibrations were tested to reduce residual non-CPMG magnetization. Image contrast of T2-weighted and T1-weighted imaging and SNR improvements were evaluated in phantom and in vivo experiments on an in-house portable 110 mT system.</p><p><strong>Results: </strong>The peak <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {B}_1 $$</annotation></semantics> </math> of multiband refocusing pulses using the obtained optimal <math> <semantics><mrow><mn>0</mn> <mo>-</mo> <mi>π</mi></mrow> <annotation>$$ 0-\\pi $$</annotation></semantics> </math> phase modulations varies closely with the expected increase of <math> <semantics> <mrow> <msqrt> <mrow> <msub><mrow><mi>N</mi></mrow> <mrow><mi>b</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mi>s</mi></mrow> </msub> </mrow> </msqrt> </mrow> <annotation>$$ \\sqrt{N_{bands}} $$</annotation></semantics> </math> . Modulations satisfying the CPMG phase condition provide similar peak <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {B}_1 $$</annotation></semantics> </math> reductions to previously proposed subband modulation schemes. Quadratic phase increment reduced shading from residual non-CPMG magnetization, and bipolar phase encoding reduced residual ghosting. Zeroth-order RF phase calibrations on the excitation and tipup, and slice select reshaping that minimized residual phase on 2D maps calculated from even and odd echo images improved contrast with long T2 species. RF-encoded multiband FSE improved SNR by a factor close to the theoretical expected improvement of <math> <semantics> <mrow> <msqrt> <mrow> <msub><mrow><mi>N</mi></mrow> <mrow><mi>b</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mi>s</mi></mrow> </msub> </mrow> </msqrt> </mrow> <annotation>$$ \\sqrt{N_{bands}} $$</annotation></semantics> </math> .</p><p><strong>Conclusion: </strong>RF-encoded multiband imaging is a viable approach for improving SNR efficiency on low-field portable systems.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiband Fast Spin Echo on portable low-field systems.\",\"authors\":\"Philip K Lee, Yueqi Qiu, Changyue Wang, Zhiyong Zhang\",\"doi\":\"10.1002/mrm.70036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To improve the SNR efficiency of Fast Spin Echo (FSE) using RF-encoded multiband imaging and to develop techniques that correct artifacts from non-Carr-Purcell-Meiboom-Gill (CPMG) magnetization arising from system imperfections.</p><p><strong>Methods: </strong>Optimal refocusing pulse <math> <semantics><mrow><mn>0</mn> <mo>-</mo> <mi>π</mi></mrow> <annotation>$$ 0-\\\\pi $$</annotation></semantics> </math> band phase modulations that satisfy the CPMG condition were calculated for different multiband factors. Fast recovery was used to enhance T2 contrast. Quadratic phase refocusing pulses, phase encode and slice select gradient reshaping, and zeroth-order phase calibrations were tested to reduce residual non-CPMG magnetization. Image contrast of T2-weighted and T1-weighted imaging and SNR improvements were evaluated in phantom and in vivo experiments on an in-house portable 110 mT system.</p><p><strong>Results: </strong>The peak <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {B}_1 $$</annotation></semantics> </math> of multiband refocusing pulses using the obtained optimal <math> <semantics><mrow><mn>0</mn> <mo>-</mo> <mi>π</mi></mrow> <annotation>$$ 0-\\\\pi $$</annotation></semantics> </math> phase modulations varies closely with the expected increase of <math> <semantics> <mrow> <msqrt> <mrow> <msub><mrow><mi>N</mi></mrow> <mrow><mi>b</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mi>s</mi></mrow> </msub> </mrow> </msqrt> </mrow> <annotation>$$ \\\\sqrt{N_{bands}} $$</annotation></semantics> </math> . Modulations satisfying the CPMG phase condition provide similar peak <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {B}_1 $$</annotation></semantics> </math> reductions to previously proposed subband modulation schemes. Quadratic phase increment reduced shading from residual non-CPMG magnetization, and bipolar phase encoding reduced residual ghosting. Zeroth-order RF phase calibrations on the excitation and tipup, and slice select reshaping that minimized residual phase on 2D maps calculated from even and odd echo images improved contrast with long T2 species. RF-encoded multiband FSE improved SNR by a factor close to the theoretical expected improvement of <math> <semantics> <mrow> <msqrt> <mrow> <msub><mrow><mi>N</mi></mrow> <mrow><mi>b</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mi>s</mi></mrow> </msub> </mrow> </msqrt> </mrow> <annotation>$$ \\\\sqrt{N_{bands}} $$</annotation></semantics> </math> .</p><p><strong>Conclusion: </strong>RF-encoded multiband imaging is a viable approach for improving SNR efficiency on low-field portable systems.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.70036\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.70036","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:利用射频编码的多波段成像提高快速自旋回波(FSE)的信噪比效率,并开发校正系统缺陷引起的非carr - purcell - meiboomm - gill (CPMG)磁化伪像的技术。方法:针对不同的多波段因素,计算满足CPMG条件的最优重聚焦脉冲0 - π $$ 0-\pi $$带相位调制。快速恢复增强T2对比。采用二次相位重聚焦脉冲、相位编码和切片选择梯度整形、零阶相位校准等方法降低非cpmg残余磁化强度。在室内便携式110 mT系统上,对t2加权和t1加权成像的图像对比度和信噪比的改善进行了评估。结果:得到的最优0 - π $$ 0-\pi $$相位调制的多波段重聚焦脉冲的峰值b1 $$ {B}_1 $$与预期的N B a和s的增加密切相关$$ \sqrt{N_{bands}} $$。与先前提出的子带调制方案相比,满足CPMG相位条件的调制提供了类似的b1峰值$$ {B}_1 $$降低。二次相位增量减少了残余非cpmg磁化的阴影,双相相位编码减少了残余重影。激发和尖端的零阶射频相位校准,以及从偶数和奇数回声图像计算的2D图上最小化残余相位的切片选择重塑,提高了与长T2物种的对比度。射频编码多波段FSE提高信噪比的系数接近于理论期望的N - b - a - d - s $$ \sqrt{N_{bands}} $$。结论:射频编码多波段成像是提高低场便携式系统信噪比效率的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiband Fast Spin Echo on portable low-field systems.

Purpose: To improve the SNR efficiency of Fast Spin Echo (FSE) using RF-encoded multiband imaging and to develop techniques that correct artifacts from non-Carr-Purcell-Meiboom-Gill (CPMG) magnetization arising from system imperfections.

Methods: Optimal refocusing pulse 0 - π $$ 0-\pi $$ band phase modulations that satisfy the CPMG condition were calculated for different multiband factors. Fast recovery was used to enhance T2 contrast. Quadratic phase refocusing pulses, phase encode and slice select gradient reshaping, and zeroth-order phase calibrations were tested to reduce residual non-CPMG magnetization. Image contrast of T2-weighted and T1-weighted imaging and SNR improvements were evaluated in phantom and in vivo experiments on an in-house portable 110 mT system.

Results: The peak B 1 $$ {B}_1 $$ of multiband refocusing pulses using the obtained optimal 0 - π $$ 0-\pi $$ phase modulations varies closely with the expected increase of N b a n d s $$ \sqrt{N_{bands}} $$ . Modulations satisfying the CPMG phase condition provide similar peak B 1 $$ {B}_1 $$ reductions to previously proposed subband modulation schemes. Quadratic phase increment reduced shading from residual non-CPMG magnetization, and bipolar phase encoding reduced residual ghosting. Zeroth-order RF phase calibrations on the excitation and tipup, and slice select reshaping that minimized residual phase on 2D maps calculated from even and odd echo images improved contrast with long T2 species. RF-encoded multiband FSE improved SNR by a factor close to the theoretical expected improvement of N b a n d s $$ \sqrt{N_{bands}} $$ .

Conclusion: RF-encoded multiband imaging is a viable approach for improving SNR efficiency on low-field portable systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信