DWT-OEFS:基于离散小波变换的帕金森病严重程度分类优化集成特征选择。

IF 3.9 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-08-08 DOI:10.1007/s11571-025-10312-3
Sneha Agrawal, Satya Prakash Sahu
{"title":"DWT-OEFS:基于离散小波变换的帕金森病严重程度分类优化集成特征选择。","authors":"Sneha Agrawal, Satya Prakash Sahu","doi":"10.1007/s11571-025-10312-3","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a cognitive degenerative condition of central nervous system which highly impacts the motor function, resulting in gait dysfunction. Determining the severity of PD is essential for timely and efficient medical management. Doctors often utilize clinical manifestations to grade the severity of PD using Hoehn & Yahr scale where their evaluation is heavily reliant on skill and experience. We propose an optimized ensemble metaheuristic-based feature selection framework by utilizing the signal processing techniques to grade the severity of PD on publicly available Physionet gait Vertical Ground Reaction Force dataset obtained using wearable device. Due to scarcity of medical dataset, the sample size is increased by segmentation of signal. Discrete wavelet transform (DWT) decomposes the signal and a total of 13 features including statistical, frequency and entropy-base are extracted. For an optimum subset of features, three bio-inspired metaheuristic algorithms Binary Grey Wolf Optimization, Binary Whale Optimization and Binary Dragonfly algorithm are used for optimized ensemble feature selection (OEFS) to prevent dimensionality curse thereby improving the classification accuracy. Further, the class imbalance issue is addressed via SMOTETomek and the selected features are then subjected to four best performing classifiers and weighted voting-based classifier. The suggested model is assessed using variety of performance assessment techniques like accuracy, precision, recall, F1-score and Mathew's Correlation Coefficient. The ensemble model achieves the maximum classification accuracy of 98.56% for multiclass classification through weighted voting. Our proposed approach outperforms existing models and individual classifiers, demonstrating its ability to accurately forecast and classify PD severity.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"126"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334388/pdf/","citationCount":"0","resultStr":"{\"title\":\"DWT-OEFS: discrete wavelet transform based optimized ensemble feature selection for Parkinson's disease severity classification.\",\"authors\":\"Sneha Agrawal, Satya Prakash Sahu\",\"doi\":\"10.1007/s11571-025-10312-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is a cognitive degenerative condition of central nervous system which highly impacts the motor function, resulting in gait dysfunction. Determining the severity of PD is essential for timely and efficient medical management. Doctors often utilize clinical manifestations to grade the severity of PD using Hoehn & Yahr scale where their evaluation is heavily reliant on skill and experience. We propose an optimized ensemble metaheuristic-based feature selection framework by utilizing the signal processing techniques to grade the severity of PD on publicly available Physionet gait Vertical Ground Reaction Force dataset obtained using wearable device. Due to scarcity of medical dataset, the sample size is increased by segmentation of signal. Discrete wavelet transform (DWT) decomposes the signal and a total of 13 features including statistical, frequency and entropy-base are extracted. For an optimum subset of features, three bio-inspired metaheuristic algorithms Binary Grey Wolf Optimization, Binary Whale Optimization and Binary Dragonfly algorithm are used for optimized ensemble feature selection (OEFS) to prevent dimensionality curse thereby improving the classification accuracy. Further, the class imbalance issue is addressed via SMOTETomek and the selected features are then subjected to four best performing classifiers and weighted voting-based classifier. The suggested model is assessed using variety of performance assessment techniques like accuracy, precision, recall, F1-score and Mathew's Correlation Coefficient. The ensemble model achieves the maximum classification accuracy of 98.56% for multiclass classification through weighted voting. Our proposed approach outperforms existing models and individual classifiers, demonstrating its ability to accurately forecast and classify PD severity.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"126\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334388/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10312-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10312-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是一种中枢神经系统认知退行性疾病,严重影响运动功能,导致步态障碍。确定PD的严重程度对于及时有效的医疗管理至关重要。医生通常使用Hoehn & Yahr量表根据临床表现对PD的严重程度进行分级,他们的评估在很大程度上依赖于技能和经验。我们提出了一个优化的基于集合元启发的特征选择框架,利用信号处理技术对可穿戴设备获得的公开可用的Physionet步态垂直地面反作用力数据集进行PD的严重程度分级。由于医学数据的稀缺性,通过对信号进行分割来增加样本容量。离散小波变换(DWT)对信号进行分解,提取出统计量、频率、熵基等13个特征。针对最优特征子集,采用三种生物启发的元启发式算法二元灰狼优化、二元鲸优化和二元蜻蜓算法进行优化集成特征选择(OEFS),防止维度诅咒,从而提高分类精度。此外,通过SMOTETomek解决了类不平衡问题,然后选择的特征将受到四个性能最佳的分类器和基于加权投票的分类器的影响。使用各种性能评估技术,如准确性、精密度、召回率、f1分数和马修相关系数,对建议的模型进行评估。通过加权投票,集成模型对多类分类达到了98.56%的最大分类准确率。我们提出的方法优于现有的模型和单个分类器,证明了其准确预测和分类PD严重程度的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DWT-OEFS: discrete wavelet transform based optimized ensemble feature selection for Parkinson's disease severity classification.

Parkinson's disease (PD) is a cognitive degenerative condition of central nervous system which highly impacts the motor function, resulting in gait dysfunction. Determining the severity of PD is essential for timely and efficient medical management. Doctors often utilize clinical manifestations to grade the severity of PD using Hoehn & Yahr scale where their evaluation is heavily reliant on skill and experience. We propose an optimized ensemble metaheuristic-based feature selection framework by utilizing the signal processing techniques to grade the severity of PD on publicly available Physionet gait Vertical Ground Reaction Force dataset obtained using wearable device. Due to scarcity of medical dataset, the sample size is increased by segmentation of signal. Discrete wavelet transform (DWT) decomposes the signal and a total of 13 features including statistical, frequency and entropy-base are extracted. For an optimum subset of features, three bio-inspired metaheuristic algorithms Binary Grey Wolf Optimization, Binary Whale Optimization and Binary Dragonfly algorithm are used for optimized ensemble feature selection (OEFS) to prevent dimensionality curse thereby improving the classification accuracy. Further, the class imbalance issue is addressed via SMOTETomek and the selected features are then subjected to four best performing classifiers and weighted voting-based classifier. The suggested model is assessed using variety of performance assessment techniques like accuracy, precision, recall, F1-score and Mathew's Correlation Coefficient. The ensemble model achieves the maximum classification accuracy of 98.56% for multiclass classification through weighted voting. Our proposed approach outperforms existing models and individual classifiers, demonstrating its ability to accurately forecast and classify PD severity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信