{"title":"噻唑基呋喃衍生物的设计、合成、硅吸收、分布、代谢、消除和分子对接研究及其治疗阿尔茨海默病的生物学评价。","authors":"Abdüllatif Karakaya, Ulviye Acar Çevik, Betül Kaya, Bilge Çiftçi, Adem Necip, Mesut Işık, Şükrü Beydemir, Yusuf Özkay, Zafer Asım Kaplancıklı","doi":"10.1002/open.202500305","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, a series of novel 5-hydroxymethylfuran incorporated thiazole-based furan derivatives are synthesized and characterized. The in vitro inhibitory potentials of the derivatives against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are evaluated. In addition, the inhibitory potential of the thiazole-based furan derivatives against AChE (4EY7) and BChE (4BDS) proteins is examined as in silico. For this purpose, the effects of the compounds on human metabolism are evaluated with absorption, distribution, metabolism, excretion, and toxicity programming. Furthermore, their antioxidant potential is assessed through 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assays. The enzymatic inhibition studies reveal that all compounds exhibit inhibitory effects on both AChE and BChE. Among them, compound 2b demonstrates the most potent inhibition against AChE, with a K<sub>I</sub> value of 14.887 ± 1.054 μM, whereas compound 2f exhibits the highest inhibitory activity against BChE, with a K<sub>I</sub> value of 4.763 ± 0.321 μM. Compounds 2a (12.202% for DPPH and 56.842% for ABTS) and 2i (13.309% for DPPH and 31.842% for ABTS) are among the most active compounds for both radical scavenging tests. These findings highlight that the synthesized derivatives possess promising dual cholinesterase (ChE) inhibitory activity as well as radical scavenging potential. These activities emphasize their potential as therapeutic candidates for neurodegenerative disorders such as Alzheimer's disease.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202500305"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Synthesis, In Silico Absorption, Distribution, Metabolism, and Elimination and Molecular Docking Studies of Thiazole-Based Furan Derivatives, and Their Biological Evaluation for Alzheimer Disease Therapy.\",\"authors\":\"Abdüllatif Karakaya, Ulviye Acar Çevik, Betül Kaya, Bilge Çiftçi, Adem Necip, Mesut Işık, Şükrü Beydemir, Yusuf Özkay, Zafer Asım Kaplancıklı\",\"doi\":\"10.1002/open.202500305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herein, a series of novel 5-hydroxymethylfuran incorporated thiazole-based furan derivatives are synthesized and characterized. The in vitro inhibitory potentials of the derivatives against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are evaluated. In addition, the inhibitory potential of the thiazole-based furan derivatives against AChE (4EY7) and BChE (4BDS) proteins is examined as in silico. For this purpose, the effects of the compounds on human metabolism are evaluated with absorption, distribution, metabolism, excretion, and toxicity programming. Furthermore, their antioxidant potential is assessed through 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assays. The enzymatic inhibition studies reveal that all compounds exhibit inhibitory effects on both AChE and BChE. Among them, compound 2b demonstrates the most potent inhibition against AChE, with a K<sub>I</sub> value of 14.887 ± 1.054 μM, whereas compound 2f exhibits the highest inhibitory activity against BChE, with a K<sub>I</sub> value of 4.763 ± 0.321 μM. Compounds 2a (12.202% for DPPH and 56.842% for ABTS) and 2i (13.309% for DPPH and 31.842% for ABTS) are among the most active compounds for both radical scavenging tests. These findings highlight that the synthesized derivatives possess promising dual cholinesterase (ChE) inhibitory activity as well as radical scavenging potential. These activities emphasize their potential as therapeutic candidates for neurodegenerative disorders such as Alzheimer's disease.</p>\",\"PeriodicalId\":9831,\"journal\":{\"name\":\"ChemistryOpen\",\"volume\":\" \",\"pages\":\"e202500305\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistryOpen\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/open.202500305\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202500305","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Design, Synthesis, In Silico Absorption, Distribution, Metabolism, and Elimination and Molecular Docking Studies of Thiazole-Based Furan Derivatives, and Their Biological Evaluation for Alzheimer Disease Therapy.
Herein, a series of novel 5-hydroxymethylfuran incorporated thiazole-based furan derivatives are synthesized and characterized. The in vitro inhibitory potentials of the derivatives against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are evaluated. In addition, the inhibitory potential of the thiazole-based furan derivatives against AChE (4EY7) and BChE (4BDS) proteins is examined as in silico. For this purpose, the effects of the compounds on human metabolism are evaluated with absorption, distribution, metabolism, excretion, and toxicity programming. Furthermore, their antioxidant potential is assessed through 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assays. The enzymatic inhibition studies reveal that all compounds exhibit inhibitory effects on both AChE and BChE. Among them, compound 2b demonstrates the most potent inhibition against AChE, with a KI value of 14.887 ± 1.054 μM, whereas compound 2f exhibits the highest inhibitory activity against BChE, with a KI value of 4.763 ± 0.321 μM. Compounds 2a (12.202% for DPPH and 56.842% for ABTS) and 2i (13.309% for DPPH and 31.842% for ABTS) are among the most active compounds for both radical scavenging tests. These findings highlight that the synthesized derivatives possess promising dual cholinesterase (ChE) inhibitory activity as well as radical scavenging potential. These activities emphasize their potential as therapeutic candidates for neurodegenerative disorders such as Alzheimer's disease.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.