{"title":"MESM:整合多源数据,通过多模态语言模型进行高精度蛋白质-蛋白质相互作用预测。","authors":"Feng Wang, Jinming Chu, Liyan Shen, Shan Chang","doi":"10.1186/s12915-025-02356-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Protein-protein interactions (PPIs) play a critical role in essential biological processes such as signal transduction, enzyme activity regulation, cytoskeletal structure, immune responses, and gene regulation. However, current methods mainly focus on extracting features from protein sequences and using graph neural network (GNN) to acquire interaction information from the PPI network graph. This limits the model's ability to learn richer and more effective interaction information, thereby affecting prediction performance.</p><p><strong>Results: </strong>In this study, we propose a novel deep learning method, MESM, for effectively predicting PPI. The datasets used for the PPI prediction task were primarily constructed from the STRING database, including two Homo sapiens PPI datasets, SHS27k and SHS148k, and two Saccharomyces cerevisiae PPI datasets, SYS30k and SYS60k. MESM consists of three key modules, as follows: First, MESM extracts multimodal representations from protein sequence information, protein structure information, and point cloud features through Sequence Variational Autoencoder (SVAE), Variational Graph Autoencoder (VGAE), and PointNet Autoencoder (PAE). Then, Fusion Autoencoder (FAE) is used to integrate these multimodal features, generating rich and balanced protein representations. Next, MESM leverages GraphGPS to learn structural information from the PPI network graph structure and combines Graph Attention Network (GAT) to further capture protein interaction information. Finally, MESM uses Graph Convolutional Network (GCN) and SubgraphGCN to extract global and local features from the perspective of the overall graph and subgraphs. Moreover, we build seven independent graphs from the overall PPI network graph to specifically learn the features of each PPI type, thereby enhancing the model's learning ability for different types of interactions.</p><p><strong>Conclusions: </strong>Compared to the state-of-the-art methods, MESM achieved improvements of 8.77%, 4.98%, 7.48%, and 6.08% on SHS27k, SHS148k, SYS30k, and SYS60k, respectively. The experimental results demonstrate that MESM exhibits significant improvements in PPI prediction performance.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"253"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337455/pdf/","citationCount":"0","resultStr":"{\"title\":\"MESM: integrating multi-source data for high-accuracy protein-protein interactions prediction through multimodal language models.\",\"authors\":\"Feng Wang, Jinming Chu, Liyan Shen, Shan Chang\",\"doi\":\"10.1186/s12915-025-02356-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Protein-protein interactions (PPIs) play a critical role in essential biological processes such as signal transduction, enzyme activity regulation, cytoskeletal structure, immune responses, and gene regulation. However, current methods mainly focus on extracting features from protein sequences and using graph neural network (GNN) to acquire interaction information from the PPI network graph. This limits the model's ability to learn richer and more effective interaction information, thereby affecting prediction performance.</p><p><strong>Results: </strong>In this study, we propose a novel deep learning method, MESM, for effectively predicting PPI. The datasets used for the PPI prediction task were primarily constructed from the STRING database, including two Homo sapiens PPI datasets, SHS27k and SHS148k, and two Saccharomyces cerevisiae PPI datasets, SYS30k and SYS60k. MESM consists of three key modules, as follows: First, MESM extracts multimodal representations from protein sequence information, protein structure information, and point cloud features through Sequence Variational Autoencoder (SVAE), Variational Graph Autoencoder (VGAE), and PointNet Autoencoder (PAE). Then, Fusion Autoencoder (FAE) is used to integrate these multimodal features, generating rich and balanced protein representations. Next, MESM leverages GraphGPS to learn structural information from the PPI network graph structure and combines Graph Attention Network (GAT) to further capture protein interaction information. Finally, MESM uses Graph Convolutional Network (GCN) and SubgraphGCN to extract global and local features from the perspective of the overall graph and subgraphs. Moreover, we build seven independent graphs from the overall PPI network graph to specifically learn the features of each PPI type, thereby enhancing the model's learning ability for different types of interactions.</p><p><strong>Conclusions: </strong>Compared to the state-of-the-art methods, MESM achieved improvements of 8.77%, 4.98%, 7.48%, and 6.08% on SHS27k, SHS148k, SYS30k, and SYS60k, respectively. The experimental results demonstrate that MESM exhibits significant improvements in PPI prediction performance.</p>\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":\"23 1\",\"pages\":\"253\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337455/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-025-02356-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02356-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
MESM: integrating multi-source data for high-accuracy protein-protein interactions prediction through multimodal language models.
Background: Protein-protein interactions (PPIs) play a critical role in essential biological processes such as signal transduction, enzyme activity regulation, cytoskeletal structure, immune responses, and gene regulation. However, current methods mainly focus on extracting features from protein sequences and using graph neural network (GNN) to acquire interaction information from the PPI network graph. This limits the model's ability to learn richer and more effective interaction information, thereby affecting prediction performance.
Results: In this study, we propose a novel deep learning method, MESM, for effectively predicting PPI. The datasets used for the PPI prediction task were primarily constructed from the STRING database, including two Homo sapiens PPI datasets, SHS27k and SHS148k, and two Saccharomyces cerevisiae PPI datasets, SYS30k and SYS60k. MESM consists of three key modules, as follows: First, MESM extracts multimodal representations from protein sequence information, protein structure information, and point cloud features through Sequence Variational Autoencoder (SVAE), Variational Graph Autoencoder (VGAE), and PointNet Autoencoder (PAE). Then, Fusion Autoencoder (FAE) is used to integrate these multimodal features, generating rich and balanced protein representations. Next, MESM leverages GraphGPS to learn structural information from the PPI network graph structure and combines Graph Attention Network (GAT) to further capture protein interaction information. Finally, MESM uses Graph Convolutional Network (GCN) and SubgraphGCN to extract global and local features from the perspective of the overall graph and subgraphs. Moreover, we build seven independent graphs from the overall PPI network graph to specifically learn the features of each PPI type, thereby enhancing the model's learning ability for different types of interactions.
Conclusions: Compared to the state-of-the-art methods, MESM achieved improvements of 8.77%, 4.98%, 7.48%, and 6.08% on SHS27k, SHS148k, SYS30k, and SYS60k, respectively. The experimental results demonstrate that MESM exhibits significant improvements in PPI prediction performance.
期刊介绍:
BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.