Alisha D Davis, Negin Motamed Yeganeh, Nancy Hermiston, Janet F Werker, Lara A Boyd, Sarah N Kraeutner, Anja-Xiaoxing Cui
{"title":"研究音乐成熟度、认知表现和社交技能对脑年龄差距估计(BrainAGE)的影响。","authors":"Alisha D Davis, Negin Motamed Yeganeh, Nancy Hermiston, Janet F Werker, Lara A Boyd, Sarah N Kraeutner, Anja-Xiaoxing Cui","doi":"10.1007/s00429-025-03001-8","DOIUrl":null,"url":null,"abstract":"<p><p>Brain age, an estimate of biological brain aging derived from neuroimaging, has been linked to cognitive and related factors. Metrics such as the Brain Age Gap Estimate (BrainAGE), depicting the discrepancy between predicted and chronological age, are commonly used to determine the influence of variables on brain aging. This study explored how cognitive ability, musical sophistication, and social skills contribute to BrainAGE in a sample of 81 healthy participants who underwent high-resolution magnetic resonance imaging and completed cognitive, musical, and social assessments. Following statistical analyses to fit the model, structural equation modelling was used to examine the influence of cognitive ability, assessed using the Delis-Kaplan Executive Function System, California Verbal Learning Test, and Wechsler Adult Intelligence Scale; musical sophistication, measured by the Goldsmiths Musical Sophistication Index; and social skills, evaluated using the Social Skills Inventory, on BrainAGE. Our findings demonstrated no significant influence of cognitive ability, musical expertise, or social skills on BrainAGE. These findings highlight the complexity of cognitive and social influences on brain age and underscore the need for further research into their interactive effects on neurobiological aging.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 7","pages":"132"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339644/pdf/","citationCount":"0","resultStr":"{\"title\":\"Examining the influence of musical sophistication, cognitive performance, and social skills on the Brain Age Gap Estimate (BrainAGE).\",\"authors\":\"Alisha D Davis, Negin Motamed Yeganeh, Nancy Hermiston, Janet F Werker, Lara A Boyd, Sarah N Kraeutner, Anja-Xiaoxing Cui\",\"doi\":\"10.1007/s00429-025-03001-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain age, an estimate of biological brain aging derived from neuroimaging, has been linked to cognitive and related factors. Metrics such as the Brain Age Gap Estimate (BrainAGE), depicting the discrepancy between predicted and chronological age, are commonly used to determine the influence of variables on brain aging. This study explored how cognitive ability, musical sophistication, and social skills contribute to BrainAGE in a sample of 81 healthy participants who underwent high-resolution magnetic resonance imaging and completed cognitive, musical, and social assessments. Following statistical analyses to fit the model, structural equation modelling was used to examine the influence of cognitive ability, assessed using the Delis-Kaplan Executive Function System, California Verbal Learning Test, and Wechsler Adult Intelligence Scale; musical sophistication, measured by the Goldsmiths Musical Sophistication Index; and social skills, evaluated using the Social Skills Inventory, on BrainAGE. Our findings demonstrated no significant influence of cognitive ability, musical expertise, or social skills on BrainAGE. These findings highlight the complexity of cognitive and social influences on brain age and underscore the need for further research into their interactive effects on neurobiological aging.</p>\",\"PeriodicalId\":9145,\"journal\":{\"name\":\"Brain Structure & Function\",\"volume\":\"230 7\",\"pages\":\"132\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339644/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure & Function\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-025-03001-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-025-03001-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Examining the influence of musical sophistication, cognitive performance, and social skills on the Brain Age Gap Estimate (BrainAGE).
Brain age, an estimate of biological brain aging derived from neuroimaging, has been linked to cognitive and related factors. Metrics such as the Brain Age Gap Estimate (BrainAGE), depicting the discrepancy between predicted and chronological age, are commonly used to determine the influence of variables on brain aging. This study explored how cognitive ability, musical sophistication, and social skills contribute to BrainAGE in a sample of 81 healthy participants who underwent high-resolution magnetic resonance imaging and completed cognitive, musical, and social assessments. Following statistical analyses to fit the model, structural equation modelling was used to examine the influence of cognitive ability, assessed using the Delis-Kaplan Executive Function System, California Verbal Learning Test, and Wechsler Adult Intelligence Scale; musical sophistication, measured by the Goldsmiths Musical Sophistication Index; and social skills, evaluated using the Social Skills Inventory, on BrainAGE. Our findings demonstrated no significant influence of cognitive ability, musical expertise, or social skills on BrainAGE. These findings highlight the complexity of cognitive and social influences on brain age and underscore the need for further research into their interactive effects on neurobiological aging.
期刊介绍:
Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.