Abdullahi Umar Ibrahim, Pwadubashiyi Coston Pwavodi, Mehmet Oszoz, Basil Barth Duwa, Irkham Irkham, Yeni Wahyuni Hartati
{"title":"用于检测致病性疾病的纳米修饰生物传感器:智能、多重和即时检测的前景。","authors":"Abdullahi Umar Ibrahim, Pwadubashiyi Coston Pwavodi, Mehmet Oszoz, Basil Barth Duwa, Irkham Irkham, Yeni Wahyuni Hartati","doi":"10.5599/admet.2799","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction and background: </strong>The world has witnessed several outbreaks, emergence and re-emergence of infectious diseases throughout the 21<sup>st</sup> century as a result of climate change, urbanization and migration. Several infectious diseases caused by pathogens such as SARS-CoV-2, Ebola, Zika, Dengue, Marburg viruses, <i>Mycobacterium tuberculosis</i>, etc. have caused a devastating impact on lives and livelihoods around the world. To counter these diseases, medical experts rely on conventional techniques, which include microscopy and serological testing. However, these conventional methods are hindered by several trade-offs, including high cost, longer processing times, low sensitivity, and a likelihood of false positive results. Biomedical sensors have gained momentum in clinical diagnostics due to their low cost, portability, and sensitivity, among other advantages. To improve their performance, scientists have incorporated nanomaterials. Other techniques used to enhance the performance of nanobiosensors include multiplex testing, point-of-care testing (POCT), and smart sensing.</p><p><strong>Methodology: </strong>Thus, in this review, we present a comprehensive overview of the state-of-the-art nanobiosensors for detecting infectious diseases. The review covers key topics that are centred around the application of nanotechnology in biosensing, multiplex testing, POCT and smart nano-enhanced biosensors.</p><p><strong>Findings: </strong>The findings of this review highlighted the advantages of biosensors over conventional approaches, with a limit of detection ranging from nanomolar to attomolar concentrations and a time response ranging from 1 to 3 hours.</p><p><strong>Conclusion: </strong>Despite the prospect of nanobiosensors, several limitations exist, including complexity, extensive processing time, and others. Moreover, the integration of smart technologies in nanobiosensors can offer several benefits, including high accuracy and faster detection and prediction.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"13 4","pages":"2799"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335303/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nano-modified biosensors for detection of pathogenic diseases: The prospect of smart, multiplex and point-of-care testing.\",\"authors\":\"Abdullahi Umar Ibrahim, Pwadubashiyi Coston Pwavodi, Mehmet Oszoz, Basil Barth Duwa, Irkham Irkham, Yeni Wahyuni Hartati\",\"doi\":\"10.5599/admet.2799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction and background: </strong>The world has witnessed several outbreaks, emergence and re-emergence of infectious diseases throughout the 21<sup>st</sup> century as a result of climate change, urbanization and migration. Several infectious diseases caused by pathogens such as SARS-CoV-2, Ebola, Zika, Dengue, Marburg viruses, <i>Mycobacterium tuberculosis</i>, etc. have caused a devastating impact on lives and livelihoods around the world. To counter these diseases, medical experts rely on conventional techniques, which include microscopy and serological testing. However, these conventional methods are hindered by several trade-offs, including high cost, longer processing times, low sensitivity, and a likelihood of false positive results. Biomedical sensors have gained momentum in clinical diagnostics due to their low cost, portability, and sensitivity, among other advantages. To improve their performance, scientists have incorporated nanomaterials. Other techniques used to enhance the performance of nanobiosensors include multiplex testing, point-of-care testing (POCT), and smart sensing.</p><p><strong>Methodology: </strong>Thus, in this review, we present a comprehensive overview of the state-of-the-art nanobiosensors for detecting infectious diseases. The review covers key topics that are centred around the application of nanotechnology in biosensing, multiplex testing, POCT and smart nano-enhanced biosensors.</p><p><strong>Findings: </strong>The findings of this review highlighted the advantages of biosensors over conventional approaches, with a limit of detection ranging from nanomolar to attomolar concentrations and a time response ranging from 1 to 3 hours.</p><p><strong>Conclusion: </strong>Despite the prospect of nanobiosensors, several limitations exist, including complexity, extensive processing time, and others. Moreover, the integration of smart technologies in nanobiosensors can offer several benefits, including high accuracy and faster detection and prediction.</p>\",\"PeriodicalId\":7259,\"journal\":{\"name\":\"ADMET and DMPK\",\"volume\":\"13 4\",\"pages\":\"2799\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335303/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADMET and DMPK\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/admet.2799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADMET and DMPK","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/admet.2799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Nano-modified biosensors for detection of pathogenic diseases: The prospect of smart, multiplex and point-of-care testing.
Introduction and background: The world has witnessed several outbreaks, emergence and re-emergence of infectious diseases throughout the 21st century as a result of climate change, urbanization and migration. Several infectious diseases caused by pathogens such as SARS-CoV-2, Ebola, Zika, Dengue, Marburg viruses, Mycobacterium tuberculosis, etc. have caused a devastating impact on lives and livelihoods around the world. To counter these diseases, medical experts rely on conventional techniques, which include microscopy and serological testing. However, these conventional methods are hindered by several trade-offs, including high cost, longer processing times, low sensitivity, and a likelihood of false positive results. Biomedical sensors have gained momentum in clinical diagnostics due to their low cost, portability, and sensitivity, among other advantages. To improve their performance, scientists have incorporated nanomaterials. Other techniques used to enhance the performance of nanobiosensors include multiplex testing, point-of-care testing (POCT), and smart sensing.
Methodology: Thus, in this review, we present a comprehensive overview of the state-of-the-art nanobiosensors for detecting infectious diseases. The review covers key topics that are centred around the application of nanotechnology in biosensing, multiplex testing, POCT and smart nano-enhanced biosensors.
Findings: The findings of this review highlighted the advantages of biosensors over conventional approaches, with a limit of detection ranging from nanomolar to attomolar concentrations and a time response ranging from 1 to 3 hours.
Conclusion: Despite the prospect of nanobiosensors, several limitations exist, including complexity, extensive processing time, and others. Moreover, the integration of smart technologies in nanobiosensors can offer several benefits, including high accuracy and faster detection and prediction.
期刊介绍:
ADMET and DMPK is an open access journal devoted to the rapid dissemination of new and original scientific results in all areas of absorption, distribution, metabolism, excretion, toxicology and pharmacokinetics of drugs. ADMET and DMPK publishes the following types of contributions: - Original research papers - Feature articles - Review articles - Short communications and Notes - Letters to Editors - Book reviews The scope of the Journal involves, but is not limited to, the following areas: - physico-chemical properties of drugs and methods of their determination - drug permeabilities - drug absorption - drug-drug, drug-protein, drug-membrane and drug-DNA interactions - chemical stability and degradations of drugs - instrumental methods in ADMET - drug metablic processes - routes of administration and excretion of drug - pharmacokinetic/pharmacodynamic study - quantitative structure activity/property relationship - ADME/PK modelling - Toxicology screening - Transporter identification and study