{"title":"用于慢性髓性白血病靶向治疗抗癌药物的电化学传感器。","authors":"Totka Dodevska","doi":"10.5599/admet.2825","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Treatment of chronic myeloid leukaemia includes targeted therapy with tyrosine kinase inhibitors (TKIs): imatinib, dasatinib, nilotinib, bosutinib, ponatinib, and asciminib. This review aims to prove that electrochemical sensors provide a reliable alternative to the conventional analytical methods for highly sensitive and cost-effective assay of TKIs in pharmaceutical formulations and biofluids. These platforms have significant advantages in fast detection and portability because they could be designed as miniaturized hand-held devices suitable for real-time point-of-care analysis, providing quick results for enabling personalized therapeutic drug monitoring.</p><p><strong>Experimental approach: </strong>The paper covers recent developments in substrate materials, various electrode designs, the advantages, and limitations of sensors for TKIs, encompassing both basic and applied research.</p><p><strong>Key results: </strong>This is a pioneering study that provides a general review on emerging trends, technologies, and practical applications of electrochemical sensors for TKIs analysis. The article provides researchers with a clear introduction and concise guide to the design and application of electrochemical sensors in the clinical analysis of TKIs.</p><p><strong>Conclusion: </strong>The review is intended to serve as a valuable resource for researchers in navigating the latest developments in TKIs' electrochemical sensing platforms. The fast response, high sensitivities and satisfactory recoveries obtained in blood serum and urine samples show the potential for application of the proposed electroanalytical systems in clinical analysis and optimization of chemotherapeutic treatments.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"13 4","pages":"2825"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335299/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrochemical sensors for anticancer drugs used in the targeted therapy of chronic myeloid leukaemia.\",\"authors\":\"Totka Dodevska\",\"doi\":\"10.5599/admet.2825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Treatment of chronic myeloid leukaemia includes targeted therapy with tyrosine kinase inhibitors (TKIs): imatinib, dasatinib, nilotinib, bosutinib, ponatinib, and asciminib. This review aims to prove that electrochemical sensors provide a reliable alternative to the conventional analytical methods for highly sensitive and cost-effective assay of TKIs in pharmaceutical formulations and biofluids. These platforms have significant advantages in fast detection and portability because they could be designed as miniaturized hand-held devices suitable for real-time point-of-care analysis, providing quick results for enabling personalized therapeutic drug monitoring.</p><p><strong>Experimental approach: </strong>The paper covers recent developments in substrate materials, various electrode designs, the advantages, and limitations of sensors for TKIs, encompassing both basic and applied research.</p><p><strong>Key results: </strong>This is a pioneering study that provides a general review on emerging trends, technologies, and practical applications of electrochemical sensors for TKIs analysis. The article provides researchers with a clear introduction and concise guide to the design and application of electrochemical sensors in the clinical analysis of TKIs.</p><p><strong>Conclusion: </strong>The review is intended to serve as a valuable resource for researchers in navigating the latest developments in TKIs' electrochemical sensing platforms. The fast response, high sensitivities and satisfactory recoveries obtained in blood serum and urine samples show the potential for application of the proposed electroanalytical systems in clinical analysis and optimization of chemotherapeutic treatments.</p>\",\"PeriodicalId\":7259,\"journal\":{\"name\":\"ADMET and DMPK\",\"volume\":\"13 4\",\"pages\":\"2825\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335299/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADMET and DMPK\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/admet.2825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADMET and DMPK","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/admet.2825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Electrochemical sensors for anticancer drugs used in the targeted therapy of chronic myeloid leukaemia.
Background and purpose: Treatment of chronic myeloid leukaemia includes targeted therapy with tyrosine kinase inhibitors (TKIs): imatinib, dasatinib, nilotinib, bosutinib, ponatinib, and asciminib. This review aims to prove that electrochemical sensors provide a reliable alternative to the conventional analytical methods for highly sensitive and cost-effective assay of TKIs in pharmaceutical formulations and biofluids. These platforms have significant advantages in fast detection and portability because they could be designed as miniaturized hand-held devices suitable for real-time point-of-care analysis, providing quick results for enabling personalized therapeutic drug monitoring.
Experimental approach: The paper covers recent developments in substrate materials, various electrode designs, the advantages, and limitations of sensors for TKIs, encompassing both basic and applied research.
Key results: This is a pioneering study that provides a general review on emerging trends, technologies, and practical applications of electrochemical sensors for TKIs analysis. The article provides researchers with a clear introduction and concise guide to the design and application of electrochemical sensors in the clinical analysis of TKIs.
Conclusion: The review is intended to serve as a valuable resource for researchers in navigating the latest developments in TKIs' electrochemical sensing platforms. The fast response, high sensitivities and satisfactory recoveries obtained in blood serum and urine samples show the potential for application of the proposed electroanalytical systems in clinical analysis and optimization of chemotherapeutic treatments.
期刊介绍:
ADMET and DMPK is an open access journal devoted to the rapid dissemination of new and original scientific results in all areas of absorption, distribution, metabolism, excretion, toxicology and pharmacokinetics of drugs. ADMET and DMPK publishes the following types of contributions: - Original research papers - Feature articles - Review articles - Short communications and Notes - Letters to Editors - Book reviews The scope of the Journal involves, but is not limited to, the following areas: - physico-chemical properties of drugs and methods of their determination - drug permeabilities - drug absorption - drug-drug, drug-protein, drug-membrane and drug-DNA interactions - chemical stability and degradations of drugs - instrumental methods in ADMET - drug metablic processes - routes of administration and excretion of drug - pharmacokinetic/pharmacodynamic study - quantitative structure activity/property relationship - ADME/PK modelling - Toxicology screening - Transporter identification and study