增强β-氧化样通路以优化免疫抑制剂霉酚酸的产生。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Baoqiang Fan, Yinuo Liu, Lu-Ping Chi, Chaofan Yang, Shengying Li, Wei Zhang
{"title":"增强β-氧化样通路以优化免疫抑制剂霉酚酸的产生。","authors":"Baoqiang Fan, Yinuo Liu, Lu-Ping Chi, Chaofan Yang, Shengying Li, Wei Zhang","doi":"10.1002/advs.202508826","DOIUrl":null,"url":null,"abstract":"<p><p>The recruitment of catabolic β-oxidation enzyme cascades and their reaction logic for natural product biosynthesis remains underexplored, representing a significant opportunity for synthetic biology to engineer novel pathways for structurally unique metabolites. In this study, the first functional reconstitution of the fungal β-oxidative cascade responsible for assembling the immunosuppressant mycophenolic acid (MPA) is reported. Through in vitro enzyme assays, five peroxisomal enzymes are identified that cooperatively mediate two iterative rounds of side-chain cleavage of the biosynthetic precursor MFDHMP-3C and revealed a key oxidative strategy for pharmacophore formation of MPA. These enzymes catalyzed sequential oxidation, dehydrogenation, hydration, reduction, isomerization, and reverse Claisen condensation reactions, mirroring canonical β-oxidation while adapting it for biosynthetic purposes. Furthermore, integrated overexpression of the rate-limiting peroxisomal acyl-CoA oxidase PbACOX323, peroxisomal biogenesis factor PbPex337, and endoplasmic reticulum (ER)-localized oxygenase MpaB' in Penicillium brevicompactum NRRL864 increased MPA production by 50% (from 0.77 to 1.15 g L<sup>-1</sup>), demonstrating the biotechnological efficacy of pathway optimization. This work establishes the first example of a full β-oxidation-like enzyme cascade in fungal natural product biosynthesis, providing a paradigm for the evolutionary repurposing of catabolic modules to drive synthetic innovation.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e08826"},"PeriodicalIF":14.1000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the β-Oxidation-Like Pathway for the Optimal Production of the Immunosuppressant Mycophenolic Acid.\",\"authors\":\"Baoqiang Fan, Yinuo Liu, Lu-Ping Chi, Chaofan Yang, Shengying Li, Wei Zhang\",\"doi\":\"10.1002/advs.202508826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The recruitment of catabolic β-oxidation enzyme cascades and their reaction logic for natural product biosynthesis remains underexplored, representing a significant opportunity for synthetic biology to engineer novel pathways for structurally unique metabolites. In this study, the first functional reconstitution of the fungal β-oxidative cascade responsible for assembling the immunosuppressant mycophenolic acid (MPA) is reported. Through in vitro enzyme assays, five peroxisomal enzymes are identified that cooperatively mediate two iterative rounds of side-chain cleavage of the biosynthetic precursor MFDHMP-3C and revealed a key oxidative strategy for pharmacophore formation of MPA. These enzymes catalyzed sequential oxidation, dehydrogenation, hydration, reduction, isomerization, and reverse Claisen condensation reactions, mirroring canonical β-oxidation while adapting it for biosynthetic purposes. Furthermore, integrated overexpression of the rate-limiting peroxisomal acyl-CoA oxidase PbACOX323, peroxisomal biogenesis factor PbPex337, and endoplasmic reticulum (ER)-localized oxygenase MpaB' in Penicillium brevicompactum NRRL864 increased MPA production by 50% (from 0.77 to 1.15 g L<sup>-1</sup>), demonstrating the biotechnological efficacy of pathway optimization. This work establishes the first example of a full β-oxidation-like enzyme cascade in fungal natural product biosynthesis, providing a paradigm for the evolutionary repurposing of catabolic modules to drive synthetic innovation.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e08826\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202508826\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202508826","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

分解代谢β-氧化酶级联的招募及其天然产物生物合成的反应逻辑仍未得到充分探索,这代表了合成生物学为结构独特的代谢物设计新途径的重要机会。在这项研究中,首次报道了真菌β-氧化级联的功能重构,该级联负责组装免疫抑制剂霉酚酸(MPA)。通过体外酶分析,确定了5种过氧化物酶体酶协同介导生物合成前体MFDHMP-3C的两轮反复侧链切割,揭示了MPA药效团形成的关键氧化策略。这些酶催化了顺序氧化、脱氢、水合、还原、异构化和反向克拉森缩合反应,反映了典型的β-氧化,同时使其适应于生物合成目的。此外,短压缩青霉菌NRRL864中限制性过氧化物酶体酰基辅酶a氧化酶PbACOX323、过氧化物酶体生物生成因子PbPex337和内质网定位加氧酶MpaB’的综合过表达使MPA产量增加了50%(从0.77 g L-1增加到1.15 g L-1),证明了途径优化的生物技术有效性。这项工作建立了真菌天然产物生物合成中完整的β-氧化样酶级联的第一个例子,为分解代谢模块的进化再利用提供了一个范例,以推动合成创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the β-Oxidation-Like Pathway for the Optimal Production of the Immunosuppressant Mycophenolic Acid.

The recruitment of catabolic β-oxidation enzyme cascades and their reaction logic for natural product biosynthesis remains underexplored, representing a significant opportunity for synthetic biology to engineer novel pathways for structurally unique metabolites. In this study, the first functional reconstitution of the fungal β-oxidative cascade responsible for assembling the immunosuppressant mycophenolic acid (MPA) is reported. Through in vitro enzyme assays, five peroxisomal enzymes are identified that cooperatively mediate two iterative rounds of side-chain cleavage of the biosynthetic precursor MFDHMP-3C and revealed a key oxidative strategy for pharmacophore formation of MPA. These enzymes catalyzed sequential oxidation, dehydrogenation, hydration, reduction, isomerization, and reverse Claisen condensation reactions, mirroring canonical β-oxidation while adapting it for biosynthetic purposes. Furthermore, integrated overexpression of the rate-limiting peroxisomal acyl-CoA oxidase PbACOX323, peroxisomal biogenesis factor PbPex337, and endoplasmic reticulum (ER)-localized oxygenase MpaB' in Penicillium brevicompactum NRRL864 increased MPA production by 50% (from 0.77 to 1.15 g L-1), demonstrating the biotechnological efficacy of pathway optimization. This work establishes the first example of a full β-oxidation-like enzyme cascade in fungal natural product biosynthesis, providing a paradigm for the evolutionary repurposing of catabolic modules to drive synthetic innovation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信