过压条件下变压器磁场预测的深度学习模型

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Qingjun Peng, Hantao Du, Zezhong Zheng, Haowei Zhu, Yuhang Fang
{"title":"过压条件下变压器磁场预测的深度学习模型","authors":"Qingjun Peng,&nbsp;Hantao Du,&nbsp;Zezhong Zheng,&nbsp;Haowei Zhu,&nbsp;Yuhang Fang","doi":"10.1049/elp2.70063","DOIUrl":null,"url":null,"abstract":"<p>The transformer is an important equipment in power systems. However, prolonged abnormal conditions can lead to significant damage of the transformer equipment. The current finite element analysis (FEA) method for calculating the internal physical field of transformers is time-consuming, limiting its practicality for fast simulation. This paper focuses on predicting the internal magnetic fields of transformers under overvoltage conditions, which cause irregular changes in the transformer magnetic fields due to overvoltage. Simulation datasets of transformer magnetic field under overvoltage conditions were acquired via the COMSOL software. Subsequent analysis elucidated the influence of overvoltage parameters on the electrical characteristics of transformers. Furthermore, the dimensionality of input features relevant to magnetic field prediction was expanded. Convolutional neural network (CNN) model was then employed to forecast the internal magnetic fields of transformers under overvoltage conditions. Experimental results were compared with Random Forest (RF), eXtreme Gradient Boosting (XGBoost) and deep neural network (DNN) models, demonstrating the efficiency of deep learning methods in predicting transformer magnetic fields under overvoltage conditions.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70063","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Model for Magnetic Field Prediction of Transformers Under Overvoltage Conditions\",\"authors\":\"Qingjun Peng,&nbsp;Hantao Du,&nbsp;Zezhong Zheng,&nbsp;Haowei Zhu,&nbsp;Yuhang Fang\",\"doi\":\"10.1049/elp2.70063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The transformer is an important equipment in power systems. However, prolonged abnormal conditions can lead to significant damage of the transformer equipment. The current finite element analysis (FEA) method for calculating the internal physical field of transformers is time-consuming, limiting its practicality for fast simulation. This paper focuses on predicting the internal magnetic fields of transformers under overvoltage conditions, which cause irregular changes in the transformer magnetic fields due to overvoltage. Simulation datasets of transformer magnetic field under overvoltage conditions were acquired via the COMSOL software. Subsequent analysis elucidated the influence of overvoltage parameters on the electrical characteristics of transformers. Furthermore, the dimensionality of input features relevant to magnetic field prediction was expanded. Convolutional neural network (CNN) model was then employed to forecast the internal magnetic fields of transformers under overvoltage conditions. Experimental results were compared with Random Forest (RF), eXtreme Gradient Boosting (XGBoost) and deep neural network (DNN) models, demonstrating the efficiency of deep learning methods in predicting transformer magnetic fields under overvoltage conditions.</p>\",\"PeriodicalId\":13352,\"journal\":{\"name\":\"Iet Electric Power Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70063\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Electric Power Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/elp2.70063\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/elp2.70063","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

变压器是电力系统中的重要设备。然而,长时间的异常状态会导致变压器设备的严重损坏。目前用于变压器内部物理场计算的有限元分析方法耗时长,限制了其快速仿真的实用性。本文主要研究过电压条件下变压器内部磁场的预测,过电压会引起变压器磁场的不规则变化。通过COMSOL软件获取过电压条件下变压器磁场的仿真数据集。随后的分析阐明了过电压参数对变压器电气特性的影响。进一步扩展了与磁场预测相关的输入特征的维数。然后利用卷积神经网络(CNN)模型预测过压条件下变压器的内部磁场。实验结果与随机森林(Random Forest, RF)、极端梯度增强(eXtreme Gradient boost, XGBoost)和深度神经网络(deep neural network, DNN)模型进行了比较,证明了深度学习方法在预测过电压条件下变压器磁场方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep Learning Model for Magnetic Field Prediction of Transformers Under Overvoltage Conditions

Deep Learning Model for Magnetic Field Prediction of Transformers Under Overvoltage Conditions

Deep Learning Model for Magnetic Field Prediction of Transformers Under Overvoltage Conditions

Deep Learning Model for Magnetic Field Prediction of Transformers Under Overvoltage Conditions

Deep Learning Model for Magnetic Field Prediction of Transformers Under Overvoltage Conditions

The transformer is an important equipment in power systems. However, prolonged abnormal conditions can lead to significant damage of the transformer equipment. The current finite element analysis (FEA) method for calculating the internal physical field of transformers is time-consuming, limiting its practicality for fast simulation. This paper focuses on predicting the internal magnetic fields of transformers under overvoltage conditions, which cause irregular changes in the transformer magnetic fields due to overvoltage. Simulation datasets of transformer magnetic field under overvoltage conditions were acquired via the COMSOL software. Subsequent analysis elucidated the influence of overvoltage parameters on the electrical characteristics of transformers. Furthermore, the dimensionality of input features relevant to magnetic field prediction was expanded. Convolutional neural network (CNN) model was then employed to forecast the internal magnetic fields of transformers under overvoltage conditions. Experimental results were compared with Random Forest (RF), eXtreme Gradient Boosting (XGBoost) and deep neural network (DNN) models, demonstrating the efficiency of deep learning methods in predicting transformer magnetic fields under overvoltage conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Electric Power Applications
Iet Electric Power Applications 工程技术-工程:电子与电气
CiteScore
4.80
自引率
5.90%
发文量
104
审稿时长
3 months
期刊介绍: IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear. The scope of the journal includes the following: The design and analysis of motors and generators of all sizes Rotating electrical machines Linear machines Actuators Power transformers Railway traction machines and drives Variable speed drives Machines and drives for electrically powered vehicles Industrial and non-industrial applications and processes Current Special Issue. Call for papers: Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信