热含量的定性性质

IF 0.9 3区 数学 Q2 MATHEMATICS
Michiel van den Berg, Katie Gittins
{"title":"热含量的定性性质","authors":"Michiel van den Berg,&nbsp;Katie Gittins","doi":"10.1112/blms.70091","DOIUrl":null,"url":null,"abstract":"<p>We obtain monotonicity and convexity results for the heat content of domains in Riemannian manifolds and in Euclidean space subject to various initial temperature conditions. We introduce the notion of a <i>strictly decreasing temperature set</i>, and show that it is a sufficient condition to ensure monotone heat content. In addition, in Euclidean space, we construct a domain and an initial condition for which the heat content is not monotone, as well as a domain and an initial condition for which the heat content is monotone but not convex.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2239-2252"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70091","citationCount":"0","resultStr":"{\"title\":\"Qualitative properties of the heat content\",\"authors\":\"Michiel van den Berg,&nbsp;Katie Gittins\",\"doi\":\"10.1112/blms.70091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain monotonicity and convexity results for the heat content of domains in Riemannian manifolds and in Euclidean space subject to various initial temperature conditions. We introduce the notion of a <i>strictly decreasing temperature set</i>, and show that it is a sufficient condition to ensure monotone heat content. In addition, in Euclidean space, we construct a domain and an initial condition for which the heat content is not monotone, as well as a domain and an initial condition for which the heat content is monotone but not convex.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2239-2252\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70091\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70091\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70091","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

得到黎曼流形和欧几里德空间中不同初始温度条件下区域热含量的单调性和凸性结果。我们引入了严格递减温度集的概念,并证明了它是保证热含量单调的充分条件。此外,在欧几里得空间中,构造了热容量非单调的域和初始条件,以及热容量单调但不凸的域和初始条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Qualitative properties of the heat content

Qualitative properties of the heat content

Qualitative properties of the heat content

Qualitative properties of the heat content

We obtain monotonicity and convexity results for the heat content of domains in Riemannian manifolds and in Euclidean space subject to various initial temperature conditions. We introduce the notion of a strictly decreasing temperature set, and show that it is a sufficient condition to ensure monotone heat content. In addition, in Euclidean space, we construct a domain and an initial condition for which the heat content is not monotone, as well as a domain and an initial condition for which the heat content is monotone but not convex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信