Bi(Mg0.5Hf0.5)O3改性Ba0.55Sr0.45TiO3陶瓷高能量密度和效率的实现

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Ihsan Ullah, Abdul Manan, Rajwali Khan, Maqbool Ur Rehman, Raz Muhammad, Gang Liu, Amjad A. Almunyif, Shabir Ali
{"title":"Bi(Mg0.5Hf0.5)O3改性Ba0.55Sr0.45TiO3陶瓷高能量密度和效率的实现","authors":"Ihsan Ullah,&nbsp;Abdul Manan,&nbsp;Rajwali Khan,&nbsp;Maqbool Ur Rehman,&nbsp;Raz Muhammad,&nbsp;Gang Liu,&nbsp;Amjad A. Almunyif,&nbsp;Shabir Ali","doi":"10.1111/ijac.70004","DOIUrl":null,"url":null,"abstract":"<p>(1 ‒ <i>x</i>)Ba<sub>0.55</sub>Sr<sub>0.45</sub>TiO<sub>3</sub>‒<i>x</i>Bi(Mg<sub>0.5</sub>Hf<sub>0.5</sub>)O<sub>3</sub> [(1 ‒ <i>x</i>)BST‒<i>x</i>BMH] (<i>x</i> = 0, 0.05, 0.10, 0.15, and 0.20) ceramics were fabricated through the well-known low-cost solid-state mix oxide sintering method. The physical and electrical properties were investigated for all ceramics sintered at 1350°C/2 h. X-ray diffraction data analysis revealed single Perovskite phase with pseudocubic symmetry for all compositions. The microstructure examination revealed densely packed grains with lowest average grain size of 0.70 µm for <i>x</i> = 0.15. BMH doping lowered the electrical conductivity that has significant effect on the breakdown voltage with increased activation energy. High recoverable energy storage density ∼4.69 J/cm<sup>3</sup> and high efficiency ∼91% at an electric field ∼450 kV/cm is achieved for 0.85BST−0.15BMH ceramic. Furthermore, 0.85BST−0.15BMH ceramic possess fast discharge time of ∼40 ns and a high power density of 122 MW/cm<sup>3</sup> at 180 kV/cm. These properties reveal that 0.85BST−0.15BMH ceramic is a potential candidate for power electronic capacitor applications working in high-temperature condition.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ceramics.onlinelibrary.wiley.com/doi/epdf/10.1111/ijac.70004","citationCount":"0","resultStr":"{\"title\":\"Achievement of high energy density and efficiency in Bi(Mg0.5Hf0.5)O3 modified Ba0.55Sr0.45TiO3 ceramics\",\"authors\":\"Ihsan Ullah,&nbsp;Abdul Manan,&nbsp;Rajwali Khan,&nbsp;Maqbool Ur Rehman,&nbsp;Raz Muhammad,&nbsp;Gang Liu,&nbsp;Amjad A. Almunyif,&nbsp;Shabir Ali\",\"doi\":\"10.1111/ijac.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>(1 ‒ <i>x</i>)Ba<sub>0.55</sub>Sr<sub>0.45</sub>TiO<sub>3</sub>‒<i>x</i>Bi(Mg<sub>0.5</sub>Hf<sub>0.5</sub>)O<sub>3</sub> [(1 ‒ <i>x</i>)BST‒<i>x</i>BMH] (<i>x</i> = 0, 0.05, 0.10, 0.15, and 0.20) ceramics were fabricated through the well-known low-cost solid-state mix oxide sintering method. The physical and electrical properties were investigated for all ceramics sintered at 1350°C/2 h. X-ray diffraction data analysis revealed single Perovskite phase with pseudocubic symmetry for all compositions. The microstructure examination revealed densely packed grains with lowest average grain size of 0.70 µm for <i>x</i> = 0.15. BMH doping lowered the electrical conductivity that has significant effect on the breakdown voltage with increased activation energy. High recoverable energy storage density ∼4.69 J/cm<sup>3</sup> and high efficiency ∼91% at an electric field ∼450 kV/cm is achieved for 0.85BST−0.15BMH ceramic. Furthermore, 0.85BST−0.15BMH ceramic possess fast discharge time of ∼40 ns and a high power density of 122 MW/cm<sup>3</sup> at 180 kV/cm. These properties reveal that 0.85BST−0.15BMH ceramic is a potential candidate for power electronic capacitor applications working in high-temperature condition.</p>\",\"PeriodicalId\":13903,\"journal\":{\"name\":\"International Journal of Applied Ceramic Technology\",\"volume\":\"22 5\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ceramics.onlinelibrary.wiley.com/doi/epdf/10.1111/ijac.70004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Ceramic Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://ceramics.onlinelibrary.wiley.com/doi/10.1111/ijac.70004\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://ceramics.onlinelibrary.wiley.com/doi/10.1111/ijac.70004","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

采用低成本固相混合氧化物烧结法制备(1 - x) Ba0.55Sr0.45TiO3-xBi (Mg0.5Hf0.5)O3 [(1 - x) BST-xBMH] (x = 0,0.05, 0.10, 0.15, 0.20)陶瓷。在1350°C/2 h下对所有陶瓷的物理和电学性能进行了研究。x射线衍射数据分析表明,所有成分均具有赝对称的单一钙钛矿相。显微组织检查显示,x = 0.15时晶粒密集排列,平均晶粒尺寸最小,为0.70µm。BMH掺杂降低了电导率,随着活化能的增加对击穿电压有显著影响。对于0.85BST - 0.15BMH陶瓷,可实现高可回收能量存储密度(4.69 J/cm3)和在电场(450 kV/cm)下的高效率(91%)。此外,0.85BST - 0.15BMH陶瓷在180 kV/cm下具有约40 ns的快速放电时间和122 MW/cm3的高功率密度。这些特性表明,0.85BST - 0.15BMH陶瓷是在高温条件下工作的电力电子电容器的潜在候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Achievement of high energy density and efficiency in Bi(Mg0.5Hf0.5)O3 modified Ba0.55Sr0.45TiO3 ceramics

Achievement of high energy density and efficiency in Bi(Mg0.5Hf0.5)O3 modified Ba0.55Sr0.45TiO3 ceramics

Achievement of high energy density and efficiency in Bi(Mg0.5Hf0.5)O3 modified Ba0.55Sr0.45TiO3 ceramics

Achievement of high energy density and efficiency in Bi(Mg0.5Hf0.5)O3 modified Ba0.55Sr0.45TiO3 ceramics

(1 ‒ x)Ba0.55Sr0.45TiO3xBi(Mg0.5Hf0.5)O3 [(1 ‒ x)BST‒xBMH] (x = 0, 0.05, 0.10, 0.15, and 0.20) ceramics were fabricated through the well-known low-cost solid-state mix oxide sintering method. The physical and electrical properties were investigated for all ceramics sintered at 1350°C/2 h. X-ray diffraction data analysis revealed single Perovskite phase with pseudocubic symmetry for all compositions. The microstructure examination revealed densely packed grains with lowest average grain size of 0.70 µm for x = 0.15. BMH doping lowered the electrical conductivity that has significant effect on the breakdown voltage with increased activation energy. High recoverable energy storage density ∼4.69 J/cm3 and high efficiency ∼91% at an electric field ∼450 kV/cm is achieved for 0.85BST−0.15BMH ceramic. Furthermore, 0.85BST−0.15BMH ceramic possess fast discharge time of ∼40 ns and a high power density of 122 MW/cm3 at 180 kV/cm. These properties reveal that 0.85BST−0.15BMH ceramic is a potential candidate for power electronic capacitor applications working in high-temperature condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Ceramic Technology
International Journal of Applied Ceramic Technology 工程技术-材料科学:硅酸盐
CiteScore
3.90
自引率
9.50%
发文量
280
审稿时长
4.5 months
期刊介绍: The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas: Nanotechnology applications; Ceramic Armor; Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors); Ceramic Matrix Composites; Functional Materials; Thermal and Environmental Barrier Coatings; Bioceramic Applications; Green Manufacturing; Ceramic Processing; Glass Technology; Fiber optics; Ceramics in Environmental Applications; Ceramics in Electronic, Photonic and Magnetic Applications;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信