计算研究探索含p块元素的ni修饰纳米笼在CO2封存中的作用

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Sarita Yadav, Ejaz Ahmad, Madhulika Gupta
{"title":"计算研究探索含p块元素的ni修饰纳米笼在CO2封存中的作用","authors":"Sarita Yadav,&nbsp;Ejaz Ahmad,&nbsp;Madhulika Gupta","doi":"10.1002/slct.202502916","DOIUrl":null,"url":null,"abstract":"<p>The deteriorating environmental conditions worldwide require research initiatives to develop mitigation strategies and sophisticated techniques to detect, store, capture, and utilize greenhouse gases such as CO<sub>2</sub> to counter unprecedented global warming. The current study employs density function theory (DFT) to explore the implementation of four p-block elements, namely Boron (B), Aluminium (Al), Nitrogen (N), and Phosphorus (P) in X<sub>12</sub>Y<sub>12</sub> nanocages, where X and Y represent B/Al and N/P, respectively, for adsorbing CO<sub>2</sub>. The results reveal unfavorable and endothermic adsorption energies (<i>E</i><sub>ads</sub>) ranging from 0.59 to 1.51 kJ/mol for CO<sub>2</sub> adsorption on these nanocages. However, incorporating Ni onto these nanoclusters drastically improved the adsorption of CO<sub>2</sub>, with high exothermic adsorption energies ranging from −12.05 to −117.70 kJ/mol. Several other properties, such as molecular electrostatic potential, dipole moment, natural bonding orbital charge, density of states, and global reactivity signifiers, support using Ni-decorated nanoclusters to favorably absorb CO<sub>2</sub>. Our results show that Ni-decorated B<sub>12</sub>N<sub>12</sub> with the highest <i>E</i><sub>ads</sub> of −117.70 kJ/mol for CO<sub>2</sub> adsorption, offers a promising avenue to be explored further in experimental studies for absorbing CO<sub>2</sub> and developing alternate mitigation strategies to curb climate change.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 31","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Studies to Explore the Role of Ni-Decorated Nanocages Comprising p-block Elements for CO2 Sequestration\",\"authors\":\"Sarita Yadav,&nbsp;Ejaz Ahmad,&nbsp;Madhulika Gupta\",\"doi\":\"10.1002/slct.202502916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The deteriorating environmental conditions worldwide require research initiatives to develop mitigation strategies and sophisticated techniques to detect, store, capture, and utilize greenhouse gases such as CO<sub>2</sub> to counter unprecedented global warming. The current study employs density function theory (DFT) to explore the implementation of four p-block elements, namely Boron (B), Aluminium (Al), Nitrogen (N), and Phosphorus (P) in X<sub>12</sub>Y<sub>12</sub> nanocages, where X and Y represent B/Al and N/P, respectively, for adsorbing CO<sub>2</sub>. The results reveal unfavorable and endothermic adsorption energies (<i>E</i><sub>ads</sub>) ranging from 0.59 to 1.51 kJ/mol for CO<sub>2</sub> adsorption on these nanocages. However, incorporating Ni onto these nanoclusters drastically improved the adsorption of CO<sub>2</sub>, with high exothermic adsorption energies ranging from −12.05 to −117.70 kJ/mol. Several other properties, such as molecular electrostatic potential, dipole moment, natural bonding orbital charge, density of states, and global reactivity signifiers, support using Ni-decorated nanoclusters to favorably absorb CO<sub>2</sub>. Our results show that Ni-decorated B<sub>12</sub>N<sub>12</sub> with the highest <i>E</i><sub>ads</sub> of −117.70 kJ/mol for CO<sub>2</sub> adsorption, offers a promising avenue to be explored further in experimental studies for absorbing CO<sub>2</sub> and developing alternate mitigation strategies to curb climate change.</p>\",\"PeriodicalId\":146,\"journal\":{\"name\":\"ChemistrySelect\",\"volume\":\"10 31\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistrySelect\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.202502916\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.202502916","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

世界范围内不断恶化的环境状况要求采取研究行动,制定缓解战略和先进技术,以探测、储存、捕获和利用二氧化碳等温室气体,以应对前所未有的全球变暖。本研究采用密度函数理论(DFT)探讨硼(B)、铝(Al)、氮(N)和磷(P)四种P嵌段元素在X12Y12纳米笼中的实现,其中X和Y分别代表B/Al和N/P对CO2的吸附。结果表明,纳米笼对CO2的不利吸附能和吸热吸附能(Eads)在0.59 ~ 1.51 kJ/mol之间。然而,在这些纳米团簇上加入Ni可以显著提高CO2的吸附能力,其放热吸附能在- 12.05至- 117.70 kJ/mol之间。其他一些特性,如分子静电势、偶极矩、自然成键轨道电荷、态密度和整体反应性指标,支持使用ni修饰的纳米簇有利于吸收二氧化碳。结果表明,ni修饰的B12N12具有最高的- 117.70 kJ/mol的CO2吸附能力,为进一步研究吸收CO2和制定替代减缓策略提供了一条有希望的途径,以抑制气候变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational Studies to Explore the Role of Ni-Decorated Nanocages Comprising p-block Elements for CO2 Sequestration

Computational Studies to Explore the Role of Ni-Decorated Nanocages Comprising p-block Elements for CO2 Sequestration

Computational Studies to Explore the Role of Ni-Decorated Nanocages Comprising p-block Elements for CO2 Sequestration

Computational Studies to Explore the Role of Ni-Decorated Nanocages Comprising p-block Elements for CO2 Sequestration

Computational Studies to Explore the Role of Ni-Decorated Nanocages Comprising p-block Elements for CO2 Sequestration

The deteriorating environmental conditions worldwide require research initiatives to develop mitigation strategies and sophisticated techniques to detect, store, capture, and utilize greenhouse gases such as CO2 to counter unprecedented global warming. The current study employs density function theory (DFT) to explore the implementation of four p-block elements, namely Boron (B), Aluminium (Al), Nitrogen (N), and Phosphorus (P) in X12Y12 nanocages, where X and Y represent B/Al and N/P, respectively, for adsorbing CO2. The results reveal unfavorable and endothermic adsorption energies (Eads) ranging from 0.59 to 1.51 kJ/mol for CO2 adsorption on these nanocages. However, incorporating Ni onto these nanoclusters drastically improved the adsorption of CO2, with high exothermic adsorption energies ranging from −12.05 to −117.70 kJ/mol. Several other properties, such as molecular electrostatic potential, dipole moment, natural bonding orbital charge, density of states, and global reactivity signifiers, support using Ni-decorated nanoclusters to favorably absorb CO2. Our results show that Ni-decorated B12N12 with the highest Eads of −117.70 kJ/mol for CO2 adsorption, offers a promising avenue to be explored further in experimental studies for absorbing CO2 and developing alternate mitigation strategies to curb climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信