{"title":"黎曼-希尔伯特映射的导数","authors":"Vladimir Marković, Ognjen Tošić","doi":"10.1112/blms.70092","DOIUrl":null,"url":null,"abstract":"<p>Given a pair <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mo>∇</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,\\nabla)$</annotation>\n </semantics></math>, consisting of a closed Riemann surface <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> and a holomorphic connection <span></span><math>\n <semantics>\n <mo>∇</mo>\n <annotation>$\\nabla$</annotation>\n </semantics></math> on the trivial principal bundle <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>×</mo>\n <msub>\n <mi>SL</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$X\\times \\mathrm{SL}_2(\\mathbb {C})\\rightarrow X$</annotation>\n </semantics></math>, the Riemann–Hilbert map sends <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mo>∇</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$(X,\\nabla)$</annotation>\n </semantics></math> to its monodromy representation. We compute the derivative of this map, and provide a simple description of the locus where it is injective, recovering in the process several previously obtained results.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2253-2264"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivative of the Riemann–Hilbert map\",\"authors\":\"Vladimir Marković, Ognjen Tošić\",\"doi\":\"10.1112/blms.70092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a pair <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mo>∇</mo>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(X,\\\\nabla)$</annotation>\\n </semantics></math>, consisting of a closed Riemann surface <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> and a holomorphic connection <span></span><math>\\n <semantics>\\n <mo>∇</mo>\\n <annotation>$\\\\nabla$</annotation>\\n </semantics></math> on the trivial principal bundle <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>×</mo>\\n <msub>\\n <mi>SL</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$X\\\\times \\\\mathrm{SL}_2(\\\\mathbb {C})\\\\rightarrow X$</annotation>\\n </semantics></math>, the Riemann–Hilbert map sends <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mo>∇</mo>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(X,\\\\nabla)$</annotation>\\n </semantics></math> to its monodromy representation. We compute the derivative of this map, and provide a simple description of the locus where it is injective, recovering in the process several previously obtained results.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2253-2264\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70092\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70092","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Given a pair , consisting of a closed Riemann surface and a holomorphic connection on the trivial principal bundle , the Riemann–Hilbert map sends to its monodromy representation. We compute the derivative of this map, and provide a simple description of the locus where it is injective, recovering in the process several previously obtained results.