外域线性边界条件下稳定Boltzmann方程的不可压缩Navier-Stokes-Fourier极限

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Weijun Wu, Fujun Zhou, Yongsheng Li
{"title":"外域线性边界条件下稳定Boltzmann方程的不可压缩Navier-Stokes-Fourier极限","authors":"Weijun Wu,&nbsp;Fujun Zhou,&nbsp;Yongsheng Li","doi":"10.1007/s00021-025-00965-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims at justifying the incompressible Navier–Stokes–Fourier limit of the steady Boltzmann equation with linear boundary condition in an exterior domain. This generalizes the work Esposito, R., Guo, Y., Marra, R.: Hydrodynamic limit of a kinetic gas flow past an obstacle. Comm. Math. Phys. <b>364</b>, 765–823 (2018), to the non-isentropic case, in addition with a small external force and a small temperature variation between the wall and infinity. Some new estimates and a refined positivity-preserving scheme are established to construct a unique positive solution to the steady Boltzmann equation. An error estimate is also provided for the small Knudsen number.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incompressible Navier–Stokes–Fourier Limit of the Steady Boltzmann Equation with Linear Boundary Condition in an Exterior Domain\",\"authors\":\"Weijun Wu,&nbsp;Fujun Zhou,&nbsp;Yongsheng Li\",\"doi\":\"10.1007/s00021-025-00965-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper aims at justifying the incompressible Navier–Stokes–Fourier limit of the steady Boltzmann equation with linear boundary condition in an exterior domain. This generalizes the work Esposito, R., Guo, Y., Marra, R.: Hydrodynamic limit of a kinetic gas flow past an obstacle. Comm. Math. Phys. <b>364</b>, 765–823 (2018), to the non-isentropic case, in addition with a small external force and a small temperature variation between the wall and infinity. Some new estimates and a refined positivity-preserving scheme are established to construct a unique positive solution to the steady Boltzmann equation. An error estimate is also provided for the small Knudsen number.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-025-00965-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00965-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在证明具有线性边界条件的稳定玻尔兹曼方程在外域上的不可压缩的Navier-Stokes-Fourier极限。这推广了Esposito, R., Guo, Y., Marra, R.:动能气体流过障碍物的水动力极限。通讯。数学。物理学报,364,765-823(2018),非等熵情况下,除了一个小的外力和小的温度变化之间的墙和无穷。为了构造稳定玻尔兹曼方程的唯一正解,建立了一些新的估计和一个改进的保正格式。对较小的克努森数也给出了误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incompressible Navier–Stokes–Fourier Limit of the Steady Boltzmann Equation with Linear Boundary Condition in an Exterior Domain

This paper aims at justifying the incompressible Navier–Stokes–Fourier limit of the steady Boltzmann equation with linear boundary condition in an exterior domain. This generalizes the work Esposito, R., Guo, Y., Marra, R.: Hydrodynamic limit of a kinetic gas flow past an obstacle. Comm. Math. Phys. 364, 765–823 (2018), to the non-isentropic case, in addition with a small external force and a small temperature variation between the wall and infinity. Some new estimates and a refined positivity-preserving scheme are established to construct a unique positive solution to the steady Boltzmann equation. An error estimate is also provided for the small Knudsen number.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信