{"title":"基于SPAM方法的IEEE 802.16e WiMAX脱交织器的高效地址生成器体系结构","authors":"Vivek Karthick Perumal, Ramesh Jayabalan, Thiruvenkadam Krishnan, Dhanasekaran Selvaraj","doi":"10.1007/s10470-025-02477-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a VLSI implementation of a Synchronous Pipelined Array Multiplier (SPAM)-based address generation architecture designed for a WiMAX deinterleaver. The proposed design enhances throughput and reduces latency by adding parallelism within the array multiplier, specifically designed for efficient WiMAX deinterleaver. The architecture maintains synchronization with WiMAX operations and focuses on low power consumption, making it compatible for integration into energy-efficient systems. Simulation results demonstrate superior performance in terms of speed, power efficiency, and throughput, highlighting the architecture's suitability for high-performance WiMAX systems, particularly in wireless broadband communication. The proposed SPAM-based address generator is 58% and 18% faster than LUT-based and MUX-based systems, respectively. It also achieves 45% and 15% lower power consumption, respectively. Implemented in 45 nm CMOS technology, the proposed multiplier better performs the LUT-based architecture in Power-Delay Product (PDP) and Area-Delay Product (ADP) by 71% and 37%, respectively.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"124 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient address generator architectures for IEEE 802.16e WiMAX deinterleaver based on SPAM approach\",\"authors\":\"Vivek Karthick Perumal, Ramesh Jayabalan, Thiruvenkadam Krishnan, Dhanasekaran Selvaraj\",\"doi\":\"10.1007/s10470-025-02477-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a VLSI implementation of a Synchronous Pipelined Array Multiplier (SPAM)-based address generation architecture designed for a WiMAX deinterleaver. The proposed design enhances throughput and reduces latency by adding parallelism within the array multiplier, specifically designed for efficient WiMAX deinterleaver. The architecture maintains synchronization with WiMAX operations and focuses on low power consumption, making it compatible for integration into energy-efficient systems. Simulation results demonstrate superior performance in terms of speed, power efficiency, and throughput, highlighting the architecture's suitability for high-performance WiMAX systems, particularly in wireless broadband communication. The proposed SPAM-based address generator is 58% and 18% faster than LUT-based and MUX-based systems, respectively. It also achieves 45% and 15% lower power consumption, respectively. Implemented in 45 nm CMOS technology, the proposed multiplier better performs the LUT-based architecture in Power-Delay Product (PDP) and Area-Delay Product (ADP) by 71% and 37%, respectively.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":\"124 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-025-02477-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02477-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Efficient address generator architectures for IEEE 802.16e WiMAX deinterleaver based on SPAM approach
This paper presents a VLSI implementation of a Synchronous Pipelined Array Multiplier (SPAM)-based address generation architecture designed for a WiMAX deinterleaver. The proposed design enhances throughput and reduces latency by adding parallelism within the array multiplier, specifically designed for efficient WiMAX deinterleaver. The architecture maintains synchronization with WiMAX operations and focuses on low power consumption, making it compatible for integration into energy-efficient systems. Simulation results demonstrate superior performance in terms of speed, power efficiency, and throughput, highlighting the architecture's suitability for high-performance WiMAX systems, particularly in wireless broadband communication. The proposed SPAM-based address generator is 58% and 18% faster than LUT-based and MUX-based systems, respectively. It also achieves 45% and 15% lower power consumption, respectively. Implemented in 45 nm CMOS technology, the proposed multiplier better performs the LUT-based architecture in Power-Delay Product (PDP) and Area-Delay Product (ADP) by 71% and 37%, respectively.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.