Zihao Wu , Janko Böhm , Rourou Ma , Johann Usovitsch , Yingxuan Xu , Yang Zhang
{"title":"使用NeatIBP 1.1 + Kira执行零件集成减少","authors":"Zihao Wu , Janko Böhm , Rourou Ma , Johann Usovitsch , Yingxuan Xu , Yang Zhang","doi":"10.1016/j.cpc.2025.109798","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a new version v1.1 of <span>NeatIBP</span>. In this new version, a <span>Kira</span> interface is included. It allows the user to reduce the integration-by-parts (IBP) identity systems generated by <span>NeatIBP</span> using <span>Kira</span> in a highly automated way. This new version also implements the so-called <em>spanning cuts</em> method. It helps to reduce the total computational complexity of IBP reduction for certain hard problems. Another important feature of this new version is an algorithm to simplify the solution module of the <em>syzygy equations</em> hinted by the idea of <em>maximal cuts</em>.</div></div><div><h3>Program summary</h3><div><em>Program Title:</em> NeatIBP 1.1</div><div><em>CPC Library link to program files:</em> <span><span>https://doi.org/10.17632/ms85fpfm7b.2</span><svg><path></path></svg></span></div><div><em>Developer's repository link:</em> <span><span>https://github.com/yzhphy/NeatIBP</span><svg><path></path></svg></span></div><div><em>Licensing provisions:</em> GPLv3</div><div><em>Programming language:</em> <span>Mathematica</span></div><div><em>Nature of problem:</em> Upgrading <span>NeatIBP</span> [1], a package to decrease the difficulty of integration-by-parts reduction (IBP) of Feynman integrals via the syzygy methods.</div><div><em>Solution method:</em> We upgraded <span>NeatIBP</span> to its new version to increase its capability and usability. We developed an interface to <span>Kira</span> [2,3]. With it, the user can reduce the linear system of IBP generated by <span>NeatIBP</span> automatically through <span>Kira</span>. We implemented the so-called <em>spanning cuts</em> method in the new version. We also developed the syzygy simplification algorithm using the idea of <em>maximal cut</em>. The latter two features increased the capability of <span>NeatIBP</span> for solving harder Feynman integral families. Several other usability upgrades are also included in the new version.</div></div><div><h3>References</h3><div><ul><li><span>[1]</span><span><div>Z. Wu, J. Boehm, R. Ma, H. Xu, Y. Zhang, NeatIBP 1.0, a package generating small-size integration-by-parts relations for Feynman integrals, Comput. Phys. Commun. 295 (2024) 108999, <span><span>https://doi.org/10.1016/j.cpc.2023.108999</span><svg><path></path></svg></span>.</div></span></li><li><span>[2]</span><span><div>P. Maierhöfer, J. Usovitsch, P. Uwer, Kira—a Feynman integral reduction program, Comput. Phys. Commun. 230 (2018) 99–112, <span><span>https://doi.org/10.1016/j.cpc.2018.04.012</span><svg><path></path></svg></span>.</div></span></li><li><span>[3]</span><span><div>J. Klappert, F. Lange, P. Maierhöfer, J. Usovitsch, Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun. 266 (2021) 108024, <span><span>https://doi.org/10.1016/j.cpc.2021.108024</span><svg><path></path></svg></span>.</div></span></li></ul></div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"316 ","pages":"Article 109798"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performing integration-by-parts reductions using NeatIBP 1.1 + Kira\",\"authors\":\"Zihao Wu , Janko Böhm , Rourou Ma , Johann Usovitsch , Yingxuan Xu , Yang Zhang\",\"doi\":\"10.1016/j.cpc.2025.109798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a new version v1.1 of <span>NeatIBP</span>. In this new version, a <span>Kira</span> interface is included. It allows the user to reduce the integration-by-parts (IBP) identity systems generated by <span>NeatIBP</span> using <span>Kira</span> in a highly automated way. This new version also implements the so-called <em>spanning cuts</em> method. It helps to reduce the total computational complexity of IBP reduction for certain hard problems. Another important feature of this new version is an algorithm to simplify the solution module of the <em>syzygy equations</em> hinted by the idea of <em>maximal cuts</em>.</div></div><div><h3>Program summary</h3><div><em>Program Title:</em> NeatIBP 1.1</div><div><em>CPC Library link to program files:</em> <span><span>https://doi.org/10.17632/ms85fpfm7b.2</span><svg><path></path></svg></span></div><div><em>Developer's repository link:</em> <span><span>https://github.com/yzhphy/NeatIBP</span><svg><path></path></svg></span></div><div><em>Licensing provisions:</em> GPLv3</div><div><em>Programming language:</em> <span>Mathematica</span></div><div><em>Nature of problem:</em> Upgrading <span>NeatIBP</span> [1], a package to decrease the difficulty of integration-by-parts reduction (IBP) of Feynman integrals via the syzygy methods.</div><div><em>Solution method:</em> We upgraded <span>NeatIBP</span> to its new version to increase its capability and usability. We developed an interface to <span>Kira</span> [2,3]. With it, the user can reduce the linear system of IBP generated by <span>NeatIBP</span> automatically through <span>Kira</span>. We implemented the so-called <em>spanning cuts</em> method in the new version. We also developed the syzygy simplification algorithm using the idea of <em>maximal cut</em>. The latter two features increased the capability of <span>NeatIBP</span> for solving harder Feynman integral families. Several other usability upgrades are also included in the new version.</div></div><div><h3>References</h3><div><ul><li><span>[1]</span><span><div>Z. Wu, J. Boehm, R. Ma, H. Xu, Y. Zhang, NeatIBP 1.0, a package generating small-size integration-by-parts relations for Feynman integrals, Comput. Phys. Commun. 295 (2024) 108999, <span><span>https://doi.org/10.1016/j.cpc.2023.108999</span><svg><path></path></svg></span>.</div></span></li><li><span>[2]</span><span><div>P. Maierhöfer, J. Usovitsch, P. Uwer, Kira—a Feynman integral reduction program, Comput. Phys. Commun. 230 (2018) 99–112, <span><span>https://doi.org/10.1016/j.cpc.2018.04.012</span><svg><path></path></svg></span>.</div></span></li><li><span>[3]</span><span><div>J. Klappert, F. Lange, P. Maierhöfer, J. Usovitsch, Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun. 266 (2021) 108024, <span><span>https://doi.org/10.1016/j.cpc.2021.108024</span><svg><path></path></svg></span>.</div></span></li></ul></div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"316 \",\"pages\":\"Article 109798\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465525003005\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525003005","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
我们介绍了NeatIBP的新版本v1.1。在这个新版本中,包含了一个Kira接口。它允许用户以高度自动化的方式使用Kira减少NeatIBP生成的按部件集成(IBP)标识系统。这个新版本还实现了所谓的生成切割方法。它有助于降低某些困难问题的IBP约简的总计算复杂度。这个新版本的另一个重要特征是一个算法来简化最大切割思想所暗示的syzygy方程的解模块。程序摘要程序标题:NeatIBP 1.1CPC库链接到程序文件:https://doi.org/10.17632/ms85fpfm7b.2Developer's存储库链接:https://github.com/yzhphy/NeatIBPLicensing条款:gplv3编程语言:问题的数学性质:升级NeatIBP[1],一个通过syzygy方法降低Feynman积分的IBP难度的包。解决方法:我们将NeatIBP升级到新版本,以增加其功能和可用性。我们开发了一个与Kira的接口[2,3]。有了它,用户可以通过Kira自动减少NeatIBP生成的IBP线性系统。我们在新版本中实现了所谓的跨越切割方法。我们还利用最大切割的思想开发了协同简化算法。后两个特性增加了NeatIBP求解难度较大的费曼积分族的能力。其他几个可用性升级也包括在新版本中。吴杰,马仁,徐宏,张勇,NeatIBP 1.0,一种求解Feynman积分的小尺寸分项积分关系的方法,计算机学报。理论物理。common . 295 (2024) 108999, https://doi.org/10.1016/j.cpc.2023.108999.[2]P。Maierhöfer, J. Usovitsch, P. Uwer, Kira-a - Feynman积分约简程序,计算机学报。理论物理。common . 230 (2018) 99-112, https://doi.org/10.1016/j.cpc.2018.04.012.[3]J。Klappert, F. Lange, P. Maierhöfer, J. Usovitsch,基于Kira 2.0和有限域方法的积分约简,计算机学报。理论物理。common . 266 (2021) 108024, https://doi.org/10.1016/j.cpc.2021.108024。
Performing integration-by-parts reductions using NeatIBP 1.1 + Kira
We introduce a new version v1.1 of NeatIBP. In this new version, a Kira interface is included. It allows the user to reduce the integration-by-parts (IBP) identity systems generated by NeatIBP using Kira in a highly automated way. This new version also implements the so-called spanning cuts method. It helps to reduce the total computational complexity of IBP reduction for certain hard problems. Another important feature of this new version is an algorithm to simplify the solution module of the syzygy equations hinted by the idea of maximal cuts.
Program summary
Program Title: NeatIBP 1.1
CPC Library link to program files:https://doi.org/10.17632/ms85fpfm7b.2
Nature of problem: Upgrading NeatIBP [1], a package to decrease the difficulty of integration-by-parts reduction (IBP) of Feynman integrals via the syzygy methods.
Solution method: We upgraded NeatIBP to its new version to increase its capability and usability. We developed an interface to Kira [2,3]. With it, the user can reduce the linear system of IBP generated by NeatIBP automatically through Kira. We implemented the so-called spanning cuts method in the new version. We also developed the syzygy simplification algorithm using the idea of maximal cut. The latter two features increased the capability of NeatIBP for solving harder Feynman integral families. Several other usability upgrades are also included in the new version.
References
[1]
Z. Wu, J. Boehm, R. Ma, H. Xu, Y. Zhang, NeatIBP 1.0, a package generating small-size integration-by-parts relations for Feynman integrals, Comput. Phys. Commun. 295 (2024) 108999, https://doi.org/10.1016/j.cpc.2023.108999.
[2]
P. Maierhöfer, J. Usovitsch, P. Uwer, Kira—a Feynman integral reduction program, Comput. Phys. Commun. 230 (2018) 99–112, https://doi.org/10.1016/j.cpc.2018.04.012.
[3]
J. Klappert, F. Lange, P. Maierhöfer, J. Usovitsch, Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun. 266 (2021) 108024, https://doi.org/10.1016/j.cpc.2021.108024.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.