{"title":"到2050年毛里求斯岛100%可再生能源系统:一项技术经济研究","authors":"M.N. Edoo, Robert T.F. Ah King","doi":"10.1016/j.segy.2025.100199","DOIUrl":null,"url":null,"abstract":"<div><div>The urgency of climate change and the need to reduce dependence on expensive and polluting fossil fuels have prompted a transition to renewable energy (RE) in many countries. Mauritius, a small island developing state which relies heavily on imported fossil fuels faces such a challenge. This work presents a techno-economic study of a 100 % RE system incorporating the power, transport and manufacturing sectors of Mauritius in 2050. The novelty of this study lies in it being the first 100 % RE system study for Mauritius. Furthermore, its use of mature and commercially available technologies as opposed to more advanced ones renders it realistic from the perspective of a developing country with limited means. The simulations of key scenarios demonstrate that a 100 % RE system for Mauritius is technically feasible within reasonable costs. Solar photovoltaic (PV) and battery energy storage system (BESS) would form the backbone of the 100 % RE system due to their complementarity. It was also found that offshore wind is a valuable resource as it has high-capacity factor (46.4 %) but is also highly seasonal. The switch to a 100 % RE system entails an increase in the cost of final energy, +121 % versus cost in 2016 and + 11 % versus cost in 2022 for the PV-BESS scenario. The large difference between those two years is due to the high volatility of the cost of fossil fuels which the 100 % RE system would shield the country from. Finally, electric vehicles through smart charging and vehicle-to-grid can greatly reduce the cost of electricity.</div></div>","PeriodicalId":34738,"journal":{"name":"Smart Energy","volume":"19 ","pages":"Article 100199"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"100% renewable energy system for the island of Mauritius by 2050: A techno-economic study\",\"authors\":\"M.N. Edoo, Robert T.F. Ah King\",\"doi\":\"10.1016/j.segy.2025.100199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The urgency of climate change and the need to reduce dependence on expensive and polluting fossil fuels have prompted a transition to renewable energy (RE) in many countries. Mauritius, a small island developing state which relies heavily on imported fossil fuels faces such a challenge. This work presents a techno-economic study of a 100 % RE system incorporating the power, transport and manufacturing sectors of Mauritius in 2050. The novelty of this study lies in it being the first 100 % RE system study for Mauritius. Furthermore, its use of mature and commercially available technologies as opposed to more advanced ones renders it realistic from the perspective of a developing country with limited means. The simulations of key scenarios demonstrate that a 100 % RE system for Mauritius is technically feasible within reasonable costs. Solar photovoltaic (PV) and battery energy storage system (BESS) would form the backbone of the 100 % RE system due to their complementarity. It was also found that offshore wind is a valuable resource as it has high-capacity factor (46.4 %) but is also highly seasonal. The switch to a 100 % RE system entails an increase in the cost of final energy, +121 % versus cost in 2016 and + 11 % versus cost in 2022 for the PV-BESS scenario. The large difference between those two years is due to the high volatility of the cost of fossil fuels which the 100 % RE system would shield the country from. Finally, electric vehicles through smart charging and vehicle-to-grid can greatly reduce the cost of electricity.</div></div>\",\"PeriodicalId\":34738,\"journal\":{\"name\":\"Smart Energy\",\"volume\":\"19 \",\"pages\":\"Article 100199\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666955225000279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666955225000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
100% renewable energy system for the island of Mauritius by 2050: A techno-economic study
The urgency of climate change and the need to reduce dependence on expensive and polluting fossil fuels have prompted a transition to renewable energy (RE) in many countries. Mauritius, a small island developing state which relies heavily on imported fossil fuels faces such a challenge. This work presents a techno-economic study of a 100 % RE system incorporating the power, transport and manufacturing sectors of Mauritius in 2050. The novelty of this study lies in it being the first 100 % RE system study for Mauritius. Furthermore, its use of mature and commercially available technologies as opposed to more advanced ones renders it realistic from the perspective of a developing country with limited means. The simulations of key scenarios demonstrate that a 100 % RE system for Mauritius is technically feasible within reasonable costs. Solar photovoltaic (PV) and battery energy storage system (BESS) would form the backbone of the 100 % RE system due to their complementarity. It was also found that offshore wind is a valuable resource as it has high-capacity factor (46.4 %) but is also highly seasonal. The switch to a 100 % RE system entails an increase in the cost of final energy, +121 % versus cost in 2016 and + 11 % versus cost in 2022 for the PV-BESS scenario. The large difference between those two years is due to the high volatility of the cost of fossil fuels which the 100 % RE system would shield the country from. Finally, electric vehicles through smart charging and vehicle-to-grid can greatly reduce the cost of electricity.