一般多边形网格上裂隙多孔介质中耦合达西流动的快速虚元法收敛性分析

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Peixuan Wu, Yang Wang
{"title":"一般多边形网格上裂隙多孔介质中耦合达西流动的快速虚元法收敛性分析","authors":"Peixuan Wu,&nbsp;Yang Wang","doi":"10.1016/j.camwa.2025.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we propose a novel two-grid discretization for the approximation of coupled Darcy flows in fractured porous media on general polygonal meshes. The Finite Element Method (FEM) is used to discreting the reduced fracture equation, and the Virtual Element Method (VEM) is applied to the matrix equation. The core of our fast VEM lies in the utilization of two meshes with distinct grid sizes. On the coarse grid, we solve the original coupled problem, and subsequently, we employ the coarse grid solution to decouple the equations on the finer grid. Optimal error estimates in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and semi-<span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm for the VEM solution and semi-<span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm for the fast VEM solution are rigorously provided, respectively, which shows our algorithm is capable of achieving asymptotically optimal estimation while significantly minimizing computational expenses.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"198 ","pages":"Pages 1-23"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence analysis of a fast virtual element method for coupled Darcy flows in fractured porous media on general polygonal meshes\",\"authors\":\"Peixuan Wu,&nbsp;Yang Wang\",\"doi\":\"10.1016/j.camwa.2025.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we propose a novel two-grid discretization for the approximation of coupled Darcy flows in fractured porous media on general polygonal meshes. The Finite Element Method (FEM) is used to discreting the reduced fracture equation, and the Virtual Element Method (VEM) is applied to the matrix equation. The core of our fast VEM lies in the utilization of two meshes with distinct grid sizes. On the coarse grid, we solve the original coupled problem, and subsequently, we employ the coarse grid solution to decouple the equations on the finer grid. Optimal error estimates in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and semi-<span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm for the VEM solution and semi-<span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm for the fast VEM solution are rigorously provided, respectively, which shows our algorithm is capable of achieving asymptotically optimal estimation while significantly minimizing computational expenses.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"198 \",\"pages\":\"Pages 1-23\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003293\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003293","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的双网格离散方法,用于在一般多边形网格上近似裂缝多孔介质中耦合达西流动。采用有限元法对断裂简化方程进行离散,采用虚元法对矩阵方程进行求解。我们快速VEM的核心在于利用两个网格大小不同的网格。首先在粗网格上求解原耦合问题,然后在细网格上利用粗网格解耦方程。严格地给出了VEM解的L2范数和半h1范数的最优误差估计,以及快速VEM解的半h1范数的最优误差估计,这表明我们的算法能够在显著降低计算费用的同时实现渐近最优估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence analysis of a fast virtual element method for coupled Darcy flows in fractured porous media on general polygonal meshes
In this article, we propose a novel two-grid discretization for the approximation of coupled Darcy flows in fractured porous media on general polygonal meshes. The Finite Element Method (FEM) is used to discreting the reduced fracture equation, and the Virtual Element Method (VEM) is applied to the matrix equation. The core of our fast VEM lies in the utilization of two meshes with distinct grid sizes. On the coarse grid, we solve the original coupled problem, and subsequently, we employ the coarse grid solution to decouple the equations on the finer grid. Optimal error estimates in L2 and semi-H1 norm for the VEM solution and semi-H1 norm for the fast VEM solution are rigorously provided, respectively, which shows our algorithm is capable of achieving asymptotically optimal estimation while significantly minimizing computational expenses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信