用于隔离预测和28ghz应用的大增益宽带MIMO天线设计的回归机器学习方法

IF 3 Q3 Physics and Astronomy
Md.Ashraful Haque , Redwan A. Ananta , Jun-Jiat Tiang , Mouaaz Nahas , Md Afzalur Rahman , Narinderjit Singh Sawaran Singh
{"title":"用于隔离预测和28ghz应用的大增益宽带MIMO天线设计的回归机器学习方法","authors":"Md.Ashraful Haque ,&nbsp;Redwan A. Ananta ,&nbsp;Jun-Jiat Tiang ,&nbsp;Mouaaz Nahas ,&nbsp;Md Afzalur Rahman ,&nbsp;Narinderjit Singh Sawaran Singh","doi":"10.1016/j.rio.2025.100883","DOIUrl":null,"url":null,"abstract":"<div><div>This research paper investigates the design and analysis of a miniaturized mm-Wave MIMO antenna array tailored for fifth-generation applications. The antenna demonstrates a calculated 10-dB impedance bandwidth of 16.61 % (27.137–31.788 GHz). To enhance performance, a combination of pi and L-shaped slots is employed. Constructed from low-loss dielectric material, specifically Rogers RT Druid 5880, the antenna features a dielectric constant of 2.2 and a tangent loss of 0.0009, with an ultrathin height of just 0.8 mm. The dimensions of both the substrate and ground for a single element are 0.653λ<sub>0</sub> × 0.653λ<sub>0</sub> mm, while the overall MIMO antenna design measures 2.8λ<sub>0</sub> × 2.8λ<sub>0</sub>, targeting the lowest frequency. In addition to its compact dimensions, the proposed design achieves a maximum gain of 9.129 dB, isolation greater than 26 dB, and an efficiency rating of 82.95 % at its optimal configuration. The Envelope Correlation Coefficient (ECC) is below 0.0012, and the Diversity Gain (DG) exceeds 9.99 dB. Various metrics are available to evaluate the performance of Machine Learning (ML) models, including variance score, R-squared, Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). Among the five ML models assessed, Gaussian Process Regression (GPR) showcases the highest accuracy, exhibiting the lowest prediction error in isolation assessments. The results obtained from CST and ADS modeling, alongside actual and expected outcomes from machine learning, indicate that the proposed antenna is a strong candidate for 5G<!--> <!-->applications.</div></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":"21 ","pages":"Article 100883"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regression machine learning methods for isolation prediction and massive gain broadband MIMO antenna design for 28 GHz applications\",\"authors\":\"Md.Ashraful Haque ,&nbsp;Redwan A. Ananta ,&nbsp;Jun-Jiat Tiang ,&nbsp;Mouaaz Nahas ,&nbsp;Md Afzalur Rahman ,&nbsp;Narinderjit Singh Sawaran Singh\",\"doi\":\"10.1016/j.rio.2025.100883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research paper investigates the design and analysis of a miniaturized mm-Wave MIMO antenna array tailored for fifth-generation applications. The antenna demonstrates a calculated 10-dB impedance bandwidth of 16.61 % (27.137–31.788 GHz). To enhance performance, a combination of pi and L-shaped slots is employed. Constructed from low-loss dielectric material, specifically Rogers RT Druid 5880, the antenna features a dielectric constant of 2.2 and a tangent loss of 0.0009, with an ultrathin height of just 0.8 mm. The dimensions of both the substrate and ground for a single element are 0.653λ<sub>0</sub> × 0.653λ<sub>0</sub> mm, while the overall MIMO antenna design measures 2.8λ<sub>0</sub> × 2.8λ<sub>0</sub>, targeting the lowest frequency. In addition to its compact dimensions, the proposed design achieves a maximum gain of 9.129 dB, isolation greater than 26 dB, and an efficiency rating of 82.95 % at its optimal configuration. The Envelope Correlation Coefficient (ECC) is below 0.0012, and the Diversity Gain (DG) exceeds 9.99 dB. Various metrics are available to evaluate the performance of Machine Learning (ML) models, including variance score, R-squared, Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). Among the five ML models assessed, Gaussian Process Regression (GPR) showcases the highest accuracy, exhibiting the lowest prediction error in isolation assessments. The results obtained from CST and ADS modeling, alongside actual and expected outcomes from machine learning, indicate that the proposed antenna is a strong candidate for 5G<!--> <!-->applications.</div></div>\",\"PeriodicalId\":21151,\"journal\":{\"name\":\"Results in Optics\",\"volume\":\"21 \",\"pages\":\"Article 100883\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666950125001117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950125001117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了为第五代应用量身定制的小型化毫米波MIMO天线阵列的设计和分析。该天线的10 db阻抗带宽为16.61% (27.137-31.788 GHz)。为了提高性能,采用了pi和l形槽的组合。该天线采用低损耗介质材料,特别是罗杰斯RT德鲁伊5880,其介电常数为2.2,正切损耗为0.0009,超薄高度仅为0.8毫米。单个元件的基板和地尺寸均为0.653λ0 × 0.653λ0 mm,而MIMO天线的总体设计尺寸为2.8λ0 × 2.8λ0,针对最低频率。除了紧凑的尺寸外,该设计在最佳配置下的最大增益为9.129 dB,隔离度大于26 dB,效率等级为82.95%。包络相关系数(ECC)小于0.0012,分集增益(DG)大于9.99 dB。有各种指标可用于评估机器学习(ML)模型的性能,包括方差评分、r平方、均方误差(MSE)、平均绝对误差(MAE)和均方根误差(RMSE)。在评估的五种ML模型中,高斯过程回归(GPR)显示出最高的准确性,在隔离评估中显示出最低的预测误差。从CST和ADS建模中获得的结果,以及机器学习的实际和预期结果表明,拟议的天线是5G应用的有力候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regression machine learning methods for isolation prediction and massive gain broadband MIMO antenna design for 28 GHz applications
This research paper investigates the design and analysis of a miniaturized mm-Wave MIMO antenna array tailored for fifth-generation applications. The antenna demonstrates a calculated 10-dB impedance bandwidth of 16.61 % (27.137–31.788 GHz). To enhance performance, a combination of pi and L-shaped slots is employed. Constructed from low-loss dielectric material, specifically Rogers RT Druid 5880, the antenna features a dielectric constant of 2.2 and a tangent loss of 0.0009, with an ultrathin height of just 0.8 mm. The dimensions of both the substrate and ground for a single element are 0.653λ0 × 0.653λ0 mm, while the overall MIMO antenna design measures 2.8λ0 × 2.8λ0, targeting the lowest frequency. In addition to its compact dimensions, the proposed design achieves a maximum gain of 9.129 dB, isolation greater than 26 dB, and an efficiency rating of 82.95 % at its optimal configuration. The Envelope Correlation Coefficient (ECC) is below 0.0012, and the Diversity Gain (DG) exceeds 9.99 dB. Various metrics are available to evaluate the performance of Machine Learning (ML) models, including variance score, R-squared, Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). Among the five ML models assessed, Gaussian Process Regression (GPR) showcases the highest accuracy, exhibiting the lowest prediction error in isolation assessments. The results obtained from CST and ADS modeling, alongside actual and expected outcomes from machine learning, indicate that the proposed antenna is a strong candidate for 5G applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Optics
Results in Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
2.50
自引率
0.00%
发文量
115
审稿时长
71 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信