Kosei Tomida , Huan Ting Ong , Jennifer L. Young , Chii Jou Chan
{"title":"通过机械微环境的空间分析捕捉卵巢动力学","authors":"Kosei Tomida , Huan Ting Ong , Jennifer L. Young , Chii Jou Chan","doi":"10.1016/j.semcdb.2025.103642","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, tissue mechanics has been recognized not as a passive outcome of development but may function as upstream regulators to guide cellular functions such as proliferation, migration, and differentiation. In mammalian ovaries, cross-scale mechanical signals arising from tissue deformation, extracellular matrix architecture, and intrafollicular pressure dynamically evolve over the reproductive lifespan, contributing to a complex biomechanical landscape. Despite increasing recognition of their role in regulating follicle development, mechanical signals from ovarian microenvironment are still often considered separately from changes in gene expression and metabolic pathways. In addition, comprehensive mapping of the ovarian mechano-microenvironment remains lacking, in part due to challenges in assessing mechanical information in ovaries. Here we discuss how emerging biophysical techniques, including the latest advancement in various omics technologies, allow us to probe ovarian mechanics across multiple length scales. Such an integrated approach will provide new insights on how force transmission, matrix remodeling, and cellular signaling intersect within defined spatial niches to regulate ovarian dynamics, paving the way for future understanding of the mechanobiological basis of reproductive disorders.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"175 ","pages":"Article 103642"},"PeriodicalIF":6.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capturing ovarian dynamics through spatial profiling of the mechano-microenvironment\",\"authors\":\"Kosei Tomida , Huan Ting Ong , Jennifer L. Young , Chii Jou Chan\",\"doi\":\"10.1016/j.semcdb.2025.103642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, tissue mechanics has been recognized not as a passive outcome of development but may function as upstream regulators to guide cellular functions such as proliferation, migration, and differentiation. In mammalian ovaries, cross-scale mechanical signals arising from tissue deformation, extracellular matrix architecture, and intrafollicular pressure dynamically evolve over the reproductive lifespan, contributing to a complex biomechanical landscape. Despite increasing recognition of their role in regulating follicle development, mechanical signals from ovarian microenvironment are still often considered separately from changes in gene expression and metabolic pathways. In addition, comprehensive mapping of the ovarian mechano-microenvironment remains lacking, in part due to challenges in assessing mechanical information in ovaries. Here we discuss how emerging biophysical techniques, including the latest advancement in various omics technologies, allow us to probe ovarian mechanics across multiple length scales. Such an integrated approach will provide new insights on how force transmission, matrix remodeling, and cellular signaling intersect within defined spatial niches to regulate ovarian dynamics, paving the way for future understanding of the mechanobiological basis of reproductive disorders.</div></div>\",\"PeriodicalId\":21735,\"journal\":{\"name\":\"Seminars in cell & developmental biology\",\"volume\":\"175 \",\"pages\":\"Article 103642\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in cell & developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084952125000527\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cell & developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084952125000527","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Capturing ovarian dynamics through spatial profiling of the mechano-microenvironment
In recent years, tissue mechanics has been recognized not as a passive outcome of development but may function as upstream regulators to guide cellular functions such as proliferation, migration, and differentiation. In mammalian ovaries, cross-scale mechanical signals arising from tissue deformation, extracellular matrix architecture, and intrafollicular pressure dynamically evolve over the reproductive lifespan, contributing to a complex biomechanical landscape. Despite increasing recognition of their role in regulating follicle development, mechanical signals from ovarian microenvironment are still often considered separately from changes in gene expression and metabolic pathways. In addition, comprehensive mapping of the ovarian mechano-microenvironment remains lacking, in part due to challenges in assessing mechanical information in ovaries. Here we discuss how emerging biophysical techniques, including the latest advancement in various omics technologies, allow us to probe ovarian mechanics across multiple length scales. Such an integrated approach will provide new insights on how force transmission, matrix remodeling, and cellular signaling intersect within defined spatial niches to regulate ovarian dynamics, paving the way for future understanding of the mechanobiological basis of reproductive disorders.
期刊介绍:
Seminars in Cell and Developmental Biology is a review journal dedicated to keeping scientists informed of developments in the field of molecular cell and developmental biology, on a topic by topic basis. Each issue is thematic in approach, devoted to an important topic of interest to cell and developmental biologists, focusing on the latest advances and their specific implications.
The aim of each issue is to provide a coordinated, readable, and lively review of a selected area, published rapidly to ensure currency.