用海藻糖添加剂重组宽温度范围锌离子电池用聚丙烯酰胺水凝胶中的氢键网络

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-27 DOI:10.1021/acsnano.5c06805
Lingmei Wang, Huicai Wang, Junlun Cao, Jicheng Yan, Changwei Dai, Wuzhu Sun*, Qingyang Du, Zhiqiang Huang, Dan Liu, Chao Li* and Jingyu Sun*, 
{"title":"用海藻糖添加剂重组宽温度范围锌离子电池用聚丙烯酰胺水凝胶中的氢键网络","authors":"Lingmei Wang,&nbsp;Huicai Wang,&nbsp;Junlun Cao,&nbsp;Jicheng Yan,&nbsp;Changwei Dai,&nbsp;Wuzhu Sun*,&nbsp;Qingyang Du,&nbsp;Zhiqiang Huang,&nbsp;Dan Liu,&nbsp;Chao Li* and Jingyu Sun*,&nbsp;","doi":"10.1021/acsnano.5c06805","DOIUrl":null,"url":null,"abstract":"<p >Aqueous Zn-ion batteries utilizing moldable gel electrolytes are expected to meet power requirements for wearable devices because of their inherent safety and energy output. Nevertheless, comprehensive modulation over the mechanical robustness, water retention capability, and electrode–electrolyte interface stability remains at a nascent stage. Drawing inspiration from the naturally cryoprotective and hygroscopic properties of trehalose, we herein devise a strategy by incorporating trehalose into polyacrylamide hydrogel electrolytes, targeting the construction of wearable Zn-ion batteries. The optimized hydrogel electrolyte demonstrates low-temperature adaptability (−15 °C), high-temperature stability (50 °C), and water retention capability while helping to suppress dendrite growth and parasitic reactions. Theoretical calculations and electrochemical characterizations reveal that trehalose modifies the Zn-ion solvation structure and optimizes the electrode–electrolyte interface. The thus-fabricated Zn-ion batteries exhibit favorable electrochemical performances in a wide-temperature range, achieving a capacity retention of 87.2% after 2000 cycles at 5 A g<sup>–1</sup>. The assembled pouch cell could also be sustained for more than 500 cycles. Moreover, the integration of our Zn-ion batteries with Si solar cells to construct a wearable solar-charging system enables an energy conversion efficiency exceeding 10%.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 31","pages":"28397–28409"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restructuring Hydrogen Bond Networks in Polyacrylamide Hydrogels via Trehalose Additives for Wide-Temperature-Range Zn-Ion Batteries\",\"authors\":\"Lingmei Wang,&nbsp;Huicai Wang,&nbsp;Junlun Cao,&nbsp;Jicheng Yan,&nbsp;Changwei Dai,&nbsp;Wuzhu Sun*,&nbsp;Qingyang Du,&nbsp;Zhiqiang Huang,&nbsp;Dan Liu,&nbsp;Chao Li* and Jingyu Sun*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c06805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Aqueous Zn-ion batteries utilizing moldable gel electrolytes are expected to meet power requirements for wearable devices because of their inherent safety and energy output. Nevertheless, comprehensive modulation over the mechanical robustness, water retention capability, and electrode–electrolyte interface stability remains at a nascent stage. Drawing inspiration from the naturally cryoprotective and hygroscopic properties of trehalose, we herein devise a strategy by incorporating trehalose into polyacrylamide hydrogel electrolytes, targeting the construction of wearable Zn-ion batteries. The optimized hydrogel electrolyte demonstrates low-temperature adaptability (−15 °C), high-temperature stability (50 °C), and water retention capability while helping to suppress dendrite growth and parasitic reactions. Theoretical calculations and electrochemical characterizations reveal that trehalose modifies the Zn-ion solvation structure and optimizes the electrode–electrolyte interface. The thus-fabricated Zn-ion batteries exhibit favorable electrochemical performances in a wide-temperature range, achieving a capacity retention of 87.2% after 2000 cycles at 5 A g<sup>–1</sup>. The assembled pouch cell could also be sustained for more than 500 cycles. Moreover, the integration of our Zn-ion batteries with Si solar cells to construct a wearable solar-charging system enables an energy conversion efficiency exceeding 10%.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 31\",\"pages\":\"28397–28409\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c06805\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c06805","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用可塑凝胶电解质的含水锌离子电池由于其固有的安全性和能量输出,有望满足可穿戴设备的电力需求。然而,对机械稳健性、保水能力和电极-电解质界面稳定性的综合调节仍处于初级阶段。从海藻糖天然的低温保护和吸湿特性中获得灵感,我们设计了一种将海藻糖加入聚丙烯酰胺水凝胶电解质的策略,目标是构建可穿戴的锌离子电池。优化后的水凝胶电解质具有低温适应性(- 15°C)、高温稳定性(50°C)和保水能力,同时有助于抑制枝晶生长和寄生反应。理论计算和电化学表征表明海藻糖改变了锌离子溶剂化结构,优化了电极-电解质界面。所制备的锌离子电池在较宽的温度范围内表现出良好的电化学性能,在5 a g-1下循环2000次后容量保持率达到87.2%。组装后的袋状电池也可以维持500次以上的循环。此外,我们的锌离子电池与硅太阳能电池集成,构建可穿戴太阳能充电系统,使能量转换效率超过10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Restructuring Hydrogen Bond Networks in Polyacrylamide Hydrogels via Trehalose Additives for Wide-Temperature-Range Zn-Ion Batteries

Restructuring Hydrogen Bond Networks in Polyacrylamide Hydrogels via Trehalose Additives for Wide-Temperature-Range Zn-Ion Batteries

Aqueous Zn-ion batteries utilizing moldable gel electrolytes are expected to meet power requirements for wearable devices because of their inherent safety and energy output. Nevertheless, comprehensive modulation over the mechanical robustness, water retention capability, and electrode–electrolyte interface stability remains at a nascent stage. Drawing inspiration from the naturally cryoprotective and hygroscopic properties of trehalose, we herein devise a strategy by incorporating trehalose into polyacrylamide hydrogel electrolytes, targeting the construction of wearable Zn-ion batteries. The optimized hydrogel electrolyte demonstrates low-temperature adaptability (−15 °C), high-temperature stability (50 °C), and water retention capability while helping to suppress dendrite growth and parasitic reactions. Theoretical calculations and electrochemical characterizations reveal that trehalose modifies the Zn-ion solvation structure and optimizes the electrode–electrolyte interface. The thus-fabricated Zn-ion batteries exhibit favorable electrochemical performances in a wide-temperature range, achieving a capacity retention of 87.2% after 2000 cycles at 5 A g–1. The assembled pouch cell could also be sustained for more than 500 cycles. Moreover, the integration of our Zn-ion batteries with Si solar cells to construct a wearable solar-charging system enables an energy conversion efficiency exceeding 10%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信