UiO-66(Ce)衍生物高效氟电吸附的适度碳化和纳米约束工程。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xun Liu, Yufei Shu, Mengxia Wang, Weiwen Chen, Aling Wan and Zhongying Wang*, 
{"title":"UiO-66(Ce)衍生物高效氟电吸附的适度碳化和纳米约束工程。","authors":"Xun Liu,&nbsp;Yufei Shu,&nbsp;Mengxia Wang,&nbsp;Weiwen Chen,&nbsp;Aling Wan and Zhongying Wang*,&nbsp;","doi":"10.1021/acsami.5c10186","DOIUrl":null,"url":null,"abstract":"<p >Efficient and selective removal of fluoride from water remains a critical challenge in environmental remediation. In this work, we report a thermally modulated strategy to enhance the electrosorption performance of cerium-based metal–organic frameworks (UiO-66(Ce)) for fluoride removal. Rather than complete carbonization, controlled partial carbonization at 400 °C was found to be optimal, inducing the in situ formation of well-dispersed CeO<sub>2</sub> nanoparticles and the development of interconnected mesoporous channels. The evolution of the pore structure with different thermal treatment temperatures was comprehensively characterized by N<sub>2</sub> adsorption–desorption analysis and high-resolution transmission electron microscopy (HRTEM). This approach effectively balances electrical conductivity and active site availability, leveraging a nanoconfinement effect that restricts CeO<sub>2</sub> aggregation, preserves active sites, and facilitates efficient ion transport. The optimized UiO-66(Ce)-400 °C material exhibits a high electrosorption capacity of 73.7 mg·g<sup>–1</sup>, rapid kinetics, and strong fluoride selectivity in the presence of competing anions. Finite element simulations and electrochemical analyses confirm that the synergy between enhanced mesoporosity, conductivity, and active site accessibility drives superior performance. Furthermore, the electrode demonstrates excellent regeneration and stability over five cycles. This study presents a versatile and scalable approach for engineering MOF-derived materials, offering valuable insights into the design of next-generation electrosorption systems for water treatment.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 33","pages":"47036–47046"},"PeriodicalIF":8.2000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moderate Carbonization and Nanoconfinement Engineering for High-Performance Fluoride Electrosorption in UiO-66(Ce) Derivatives\",\"authors\":\"Xun Liu,&nbsp;Yufei Shu,&nbsp;Mengxia Wang,&nbsp;Weiwen Chen,&nbsp;Aling Wan and Zhongying Wang*,&nbsp;\",\"doi\":\"10.1021/acsami.5c10186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Efficient and selective removal of fluoride from water remains a critical challenge in environmental remediation. In this work, we report a thermally modulated strategy to enhance the electrosorption performance of cerium-based metal–organic frameworks (UiO-66(Ce)) for fluoride removal. Rather than complete carbonization, controlled partial carbonization at 400 °C was found to be optimal, inducing the in situ formation of well-dispersed CeO<sub>2</sub> nanoparticles and the development of interconnected mesoporous channels. The evolution of the pore structure with different thermal treatment temperatures was comprehensively characterized by N<sub>2</sub> adsorption–desorption analysis and high-resolution transmission electron microscopy (HRTEM). This approach effectively balances electrical conductivity and active site availability, leveraging a nanoconfinement effect that restricts CeO<sub>2</sub> aggregation, preserves active sites, and facilitates efficient ion transport. The optimized UiO-66(Ce)-400 °C material exhibits a high electrosorption capacity of 73.7 mg·g<sup>–1</sup>, rapid kinetics, and strong fluoride selectivity in the presence of competing anions. Finite element simulations and electrochemical analyses confirm that the synergy between enhanced mesoporosity, conductivity, and active site accessibility drives superior performance. Furthermore, the electrode demonstrates excellent regeneration and stability over five cycles. This study presents a versatile and scalable approach for engineering MOF-derived materials, offering valuable insights into the design of next-generation electrosorption systems for water treatment.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 33\",\"pages\":\"47036–47046\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c10186\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c10186","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有效和选择性地去除水中的氟化物仍然是环境修复中的一个关键挑战。在这项工作中,我们报告了一种热调制策略,以提高铈基金属有机框架(UiO-66(Ce))的电吸附性能,用于除氟。与完全碳化相比,在400°C下控制部分碳化是最佳的,这可以诱导原位形成分散良好的CeO2纳米颗粒,并形成相互连接的中孔通道。采用N2吸附-解吸分析和高分辨率透射电镜(HRTEM)对不同热处理温度下孔隙结构的演变进行了全面表征。这种方法有效地平衡了电导率和活性位点的可用性,利用纳米限制效应来限制CeO2聚集,保留活性位点,并促进有效的离子传输。优化后的uui -66(Ce)-400℃材料具有73.7 mg·g-1的高电吸附容量、快速动力学和在竞争阴离子存在下较强的氟选择性。有限元模拟和电化学分析证实,介孔率、电导率和活性位点可达性之间的协同作用推动了优异的性能。此外,该电极在五次循环中表现出优异的再生和稳定性。这项研究为mof衍生材料的工程设计提供了一种通用的、可扩展的方法,为下一代水处理电吸附系统的设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Moderate Carbonization and Nanoconfinement Engineering for High-Performance Fluoride Electrosorption in UiO-66(Ce) Derivatives

Moderate Carbonization and Nanoconfinement Engineering for High-Performance Fluoride Electrosorption in UiO-66(Ce) Derivatives

Efficient and selective removal of fluoride from water remains a critical challenge in environmental remediation. In this work, we report a thermally modulated strategy to enhance the electrosorption performance of cerium-based metal–organic frameworks (UiO-66(Ce)) for fluoride removal. Rather than complete carbonization, controlled partial carbonization at 400 °C was found to be optimal, inducing the in situ formation of well-dispersed CeO2 nanoparticles and the development of interconnected mesoporous channels. The evolution of the pore structure with different thermal treatment temperatures was comprehensively characterized by N2 adsorption–desorption analysis and high-resolution transmission electron microscopy (HRTEM). This approach effectively balances electrical conductivity and active site availability, leveraging a nanoconfinement effect that restricts CeO2 aggregation, preserves active sites, and facilitates efficient ion transport. The optimized UiO-66(Ce)-400 °C material exhibits a high electrosorption capacity of 73.7 mg·g–1, rapid kinetics, and strong fluoride selectivity in the presence of competing anions. Finite element simulations and electrochemical analyses confirm that the synergy between enhanced mesoporosity, conductivity, and active site accessibility drives superior performance. Furthermore, the electrode demonstrates excellent regeneration and stability over five cycles. This study presents a versatile and scalable approach for engineering MOF-derived materials, offering valuable insights into the design of next-generation electrosorption systems for water treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信