木质素和纤维素的三重联锁使超坚韧、可加工的生物塑料成为可能。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-08-11 DOI:10.1021/acsnano.5c06221
Jinsong Sun, Haozhou Huang, Wen Wang, Yuan Liu, Xiaoyang Lv, Zheng Yin, Wenjing Bi, Zihao Zheng, Xue Yang, Zhihan Tong, Shi Liu, Jiajun Liu, Jianing Liu, Zhiyi Hou, Zhenqian Pang*, Haipeng Yu* and Qinqin Xia*, 
{"title":"木质素和纤维素的三重联锁使超坚韧、可加工的生物塑料成为可能。","authors":"Jinsong Sun,&nbsp;Haozhou Huang,&nbsp;Wen Wang,&nbsp;Yuan Liu,&nbsp;Xiaoyang Lv,&nbsp;Zheng Yin,&nbsp;Wenjing Bi,&nbsp;Zihao Zheng,&nbsp;Xue Yang,&nbsp;Zhihan Tong,&nbsp;Shi Liu,&nbsp;Jiajun Liu,&nbsp;Jianing Liu,&nbsp;Zhiyi Hou,&nbsp;Zhenqian Pang*,&nbsp;Haipeng Yu* and Qinqin Xia*,&nbsp;","doi":"10.1021/acsnano.5c06221","DOIUrl":null,"url":null,"abstract":"<p >Sustainable and biodegradable bioplastics from natural lignocellulose offer a promising alternative to petroleum-based plastics, yet they often exhibit limited toughness and processability due to the inherent rigidity of polymer segments. Herein, we have developed a triple interlocking strategy to fabricate a high-strength, ultratough, and processable Bioplastic (denoted as CEL Bioplastic) from cellulose and lignin in the pulp/paper industry. In this process, we leverage room-temperature esterification of long-chain fatty acids with cellulose and lignin to produce a fully biobased CEL Bioplastic, distinguished by a robust triple-interlocking architecture that combines robust physical chain entanglements, cross-linked ester bonds, and densely packed hydrogen bonds. Physical chain entanglements in CEL Bioplastic efficiently distribute tension, while ester bonds and hydrogen bonds work synergistically to prevent chain disentanglement and enhance energy dissipation. The resulting CEL Bioplastic exhibits exceptional mechanical properties, with a tensile strength of ∼200 MPa, a fracture strain of ∼75% and an impressive toughness of ∼110 MJ/m<sup>3</sup>. These values are competitive to cellulose-lignin Bioplastic (denoted as CL Bioplastic) lacking long-chain entanglements and ester bonds, in tensile strength (15 times) but far exceed them in toughness (44 times). Moreover, long alkyl substituents exert an internal plasticizing effect, enabling CEL Bioplastics to form 3D structures through simple thermal or water-assisted shaping process. Such CEL Bioplastic exhibits biodegradability, recyclability and scalability (&gt;4m in length), offering a sustainable pathway for producing high-performance bioplastics from natural biopolymers for functional and structural applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 32","pages":"29360–29371"},"PeriodicalIF":16.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultratough, Processable Bioplastics Enabled by Triple Interlocking of Lignin and Cellulose\",\"authors\":\"Jinsong Sun,&nbsp;Haozhou Huang,&nbsp;Wen Wang,&nbsp;Yuan Liu,&nbsp;Xiaoyang Lv,&nbsp;Zheng Yin,&nbsp;Wenjing Bi,&nbsp;Zihao Zheng,&nbsp;Xue Yang,&nbsp;Zhihan Tong,&nbsp;Shi Liu,&nbsp;Jiajun Liu,&nbsp;Jianing Liu,&nbsp;Zhiyi Hou,&nbsp;Zhenqian Pang*,&nbsp;Haipeng Yu* and Qinqin Xia*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c06221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sustainable and biodegradable bioplastics from natural lignocellulose offer a promising alternative to petroleum-based plastics, yet they often exhibit limited toughness and processability due to the inherent rigidity of polymer segments. Herein, we have developed a triple interlocking strategy to fabricate a high-strength, ultratough, and processable Bioplastic (denoted as CEL Bioplastic) from cellulose and lignin in the pulp/paper industry. In this process, we leverage room-temperature esterification of long-chain fatty acids with cellulose and lignin to produce a fully biobased CEL Bioplastic, distinguished by a robust triple-interlocking architecture that combines robust physical chain entanglements, cross-linked ester bonds, and densely packed hydrogen bonds. Physical chain entanglements in CEL Bioplastic efficiently distribute tension, while ester bonds and hydrogen bonds work synergistically to prevent chain disentanglement and enhance energy dissipation. The resulting CEL Bioplastic exhibits exceptional mechanical properties, with a tensile strength of ∼200 MPa, a fracture strain of ∼75% and an impressive toughness of ∼110 MJ/m<sup>3</sup>. These values are competitive to cellulose-lignin Bioplastic (denoted as CL Bioplastic) lacking long-chain entanglements and ester bonds, in tensile strength (15 times) but far exceed them in toughness (44 times). Moreover, long alkyl substituents exert an internal plasticizing effect, enabling CEL Bioplastics to form 3D structures through simple thermal or water-assisted shaping process. Such CEL Bioplastic exhibits biodegradability, recyclability and scalability (&gt;4m in length), offering a sustainable pathway for producing high-performance bioplastics from natural biopolymers for functional and structural applications.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 32\",\"pages\":\"29360–29371\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c06221\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c06221","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从天然木质纤维素中提取的可持续和可生物降解的生物塑料为石油基塑料提供了一个有前途的替代品,但由于聚合物段固有的刚性,它们通常表现出有限的韧性和可加工性。在此,我们开发了一种三重联锁策略,以纸浆/造纸工业中的纤维素和木质素为原料制造高强度、超韧和可加工的生物塑料(称为CEL生物塑料)。在这个过程中,我们利用长链脂肪酸与纤维素和木质素的室温酯化反应来生产完全基于生物的CEL生物塑料,其特点是具有强大的三联锁结构,结合了强大的物理链缠结、交联酯键和密集的氢键。CEL生物塑料中的物理链缠结有效地分配张力,而酯键和氢键协同作用,防止链缠结,增强能量耗散。由此产生的CEL生物塑料具有优异的机械性能,抗拉强度为~ 200 MPa,断裂应变为~ 75%,韧性为~ 110 MJ/m3。这些值与缺乏长链缠结和酯键的纤维素-木质素生物塑料(简称CL生物塑料)在抗拉强度(15倍)方面具有竞争力,但在韧性(44倍)方面远远超过它们。此外,长烷基取代基发挥内部塑化作用,使CEL生物塑料通过简单的热或水辅助成型工艺形成三维结构。这种CEL生物塑料具有生物可降解性、可回收性和可扩展性(长度为100米),为从天然生物聚合物中生产高性能生物塑料提供了一条可持续的途径,用于功能和结构应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultratough, Processable Bioplastics Enabled by Triple Interlocking of Lignin and Cellulose

Ultratough, Processable Bioplastics Enabled by Triple Interlocking of Lignin and Cellulose

Sustainable and biodegradable bioplastics from natural lignocellulose offer a promising alternative to petroleum-based plastics, yet they often exhibit limited toughness and processability due to the inherent rigidity of polymer segments. Herein, we have developed a triple interlocking strategy to fabricate a high-strength, ultratough, and processable Bioplastic (denoted as CEL Bioplastic) from cellulose and lignin in the pulp/paper industry. In this process, we leverage room-temperature esterification of long-chain fatty acids with cellulose and lignin to produce a fully biobased CEL Bioplastic, distinguished by a robust triple-interlocking architecture that combines robust physical chain entanglements, cross-linked ester bonds, and densely packed hydrogen bonds. Physical chain entanglements in CEL Bioplastic efficiently distribute tension, while ester bonds and hydrogen bonds work synergistically to prevent chain disentanglement and enhance energy dissipation. The resulting CEL Bioplastic exhibits exceptional mechanical properties, with a tensile strength of ∼200 MPa, a fracture strain of ∼75% and an impressive toughness of ∼110 MJ/m3. These values are competitive to cellulose-lignin Bioplastic (denoted as CL Bioplastic) lacking long-chain entanglements and ester bonds, in tensile strength (15 times) but far exceed them in toughness (44 times). Moreover, long alkyl substituents exert an internal plasticizing effect, enabling CEL Bioplastics to form 3D structures through simple thermal or water-assisted shaping process. Such CEL Bioplastic exhibits biodegradability, recyclability and scalability (>4m in length), offering a sustainable pathway for producing high-performance bioplastics from natural biopolymers for functional and structural applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信