Xiaosheng Song, Yi Zhang, Zhijie Guo, Shuang Wu, Yong Zhao, Xinghui Liang, Myoung-Chan Kim, Hun Kim, Yang-Kook Sun
{"title":"高温锂金属电池用锂键基深共晶电解质解决方案。","authors":"Xiaosheng Song, Yi Zhang, Zhijie Guo, Shuang Wu, Yong Zhao, Xinghui Liang, Myoung-Chan Kim, Hun Kim, Yang-Kook Sun","doi":"10.1002/anie.202511772","DOIUrl":null,"url":null,"abstract":"<p>Achieving long-term cycling stability in high-temperature lithium metal batteries (LMBs) demands both efficient ion transport and stable electrode interfaces. However, the molecular polarity and strong ionic interactions of conventional electrolytes hinder ion mobility and compromise interfacial stability. In this study, we developed a deep eutectic electrolyte based on Li-bond (Li-DEE) comprising tetraethylammonium nitrate and lithium bis(fluorosulfonyl)imide, which is different from the traditional hydrogen bonding or lithium ionic bonding electrolyte. The Li-bond network within the Li-DEE enables rapid lithium-ion transport (6.5 × 10<sup>−</sup><sup>3</sup> S cm<sup>−1</sup> at 100 °C) while forming a stable electrode interface rich in Li<sub>3</sub>N and LiF. As a result, the Li-DEE enables an LMB to deliver a high capacity retention of 80% over 635 cycles at 0.5 C and a capacity of 84.4 mAh g<sup>−1</sup> after 1500 cycles at 2 C and 100 °C. This study provides valuable insights for designing next-generation electrolytes that function under extreme operating conditions.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 39","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium-Bond-Based Deep Eutectic Electrolyte Solutions for High-Temperature Lithium Metal Batteries\",\"authors\":\"Xiaosheng Song, Yi Zhang, Zhijie Guo, Shuang Wu, Yong Zhao, Xinghui Liang, Myoung-Chan Kim, Hun Kim, Yang-Kook Sun\",\"doi\":\"10.1002/anie.202511772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Achieving long-term cycling stability in high-temperature lithium metal batteries (LMBs) demands both efficient ion transport and stable electrode interfaces. However, the molecular polarity and strong ionic interactions of conventional electrolytes hinder ion mobility and compromise interfacial stability. In this study, we developed a deep eutectic electrolyte based on Li-bond (Li-DEE) comprising tetraethylammonium nitrate and lithium bis(fluorosulfonyl)imide, which is different from the traditional hydrogen bonding or lithium ionic bonding electrolyte. The Li-bond network within the Li-DEE enables rapid lithium-ion transport (6.5 × 10<sup>−</sup><sup>3</sup> S cm<sup>−1</sup> at 100 °C) while forming a stable electrode interface rich in Li<sub>3</sub>N and LiF. As a result, the Li-DEE enables an LMB to deliver a high capacity retention of 80% over 635 cycles at 0.5 C and a capacity of 84.4 mAh g<sup>−1</sup> after 1500 cycles at 2 C and 100 °C. This study provides valuable insights for designing next-generation electrolytes that function under extreme operating conditions.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 39\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202511772\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202511772","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
实现高温锂金属电池(lmb)的长期循环稳定性需要高效的离子传输和稳定的电极界面。然而,传统电解质的分子极性和强离子相互作用阻碍了离子的迁移,损害了界面的稳定性。在本研究中,我们开发了一种不同于传统氢键或锂离子键电解质的基于锂键(Li-DEE)的深共晶电解质,该电解质由硝酸四乙基铵和二氟磺酰亚胺锂组成。Li-DEE内的锂键网络可以实现锂离子的快速传输(在100°C时为6.5 × 10- 3 S cm-1),同时形成富含Li3N和LiF的稳定电极界面。因此,Li-DEE使LMB能够在0.5 C下提供超过635次循环80%的高容量保持,在2 C和100°C下进行1500次循环后的容量为84.4 mAh g-1。这项研究为设计在极端工作条件下发挥作用的下一代电解质提供了有价值的见解。
Lithium-Bond-Based Deep Eutectic Electrolyte Solutions for High-Temperature Lithium Metal Batteries
Achieving long-term cycling stability in high-temperature lithium metal batteries (LMBs) demands both efficient ion transport and stable electrode interfaces. However, the molecular polarity and strong ionic interactions of conventional electrolytes hinder ion mobility and compromise interfacial stability. In this study, we developed a deep eutectic electrolyte based on Li-bond (Li-DEE) comprising tetraethylammonium nitrate and lithium bis(fluorosulfonyl)imide, which is different from the traditional hydrogen bonding or lithium ionic bonding electrolyte. The Li-bond network within the Li-DEE enables rapid lithium-ion transport (6.5 × 10−3 S cm−1 at 100 °C) while forming a stable electrode interface rich in Li3N and LiF. As a result, the Li-DEE enables an LMB to deliver a high capacity retention of 80% over 635 cycles at 0.5 C and a capacity of 84.4 mAh g−1 after 1500 cycles at 2 C and 100 °C. This study provides valuable insights for designing next-generation electrolytes that function under extreme operating conditions.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.