由氧化铜微晶光电突触实现的光子介导的神经形态计算。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Semyon Bachinin*, Maria Timofeeva, Alexandra Gavrilova, Svyatoslav Povarov, Vladimir Shirobokov, Alena N. Kulakova and Valentin A. Milichko*, 
{"title":"由氧化铜微晶光电突触实现的光子介导的神经形态计算。","authors":"Semyon Bachinin*,&nbsp;Maria Timofeeva,&nbsp;Alexandra Gavrilova,&nbsp;Svyatoslav Povarov,&nbsp;Vladimir Shirobokov,&nbsp;Alena N. Kulakova and Valentin A. Milichko*,&nbsp;","doi":"10.1021/acsami.5c06829","DOIUrl":null,"url":null,"abstract":"<p >The concept of photonic neuromorphic computing offers fast, energy-efficient, and autonomous data processing yet faces challenges in the design of an active material, enabling the desired performance. Here, we demonstrate a copper oxide microcrystal optical synapse, demonstrating efficient, fast, and highly enhanced photonic neuromorphic computing. By optically pumping a single microcrystal with 2.3 eV photons, we observe a history-dependent response of photoexcited electrons (spike), controlled by the pumping repetition rate. This neuromorphic behavior exhibits a 1 ms spike response time, a 10<sup>2</sup> on/off ratio, exceptional endurance over 13,400 cycles, and allows achieving 95% accuracy in handwritten digit recognition in three training epochs. The reported optical synapse surpasses most existing designs, paving the way for efficient and long-lasting photonic neuromorphic data processing.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 33","pages":"47122–47129"},"PeriodicalIF":8.2000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photonic-Mediated Neuromorphic Computing Enabled by a Copper Oxide Microcrystal Optoelectronic Synapse\",\"authors\":\"Semyon Bachinin*,&nbsp;Maria Timofeeva,&nbsp;Alexandra Gavrilova,&nbsp;Svyatoslav Povarov,&nbsp;Vladimir Shirobokov,&nbsp;Alena N. Kulakova and Valentin A. Milichko*,&nbsp;\",\"doi\":\"10.1021/acsami.5c06829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The concept of photonic neuromorphic computing offers fast, energy-efficient, and autonomous data processing yet faces challenges in the design of an active material, enabling the desired performance. Here, we demonstrate a copper oxide microcrystal optical synapse, demonstrating efficient, fast, and highly enhanced photonic neuromorphic computing. By optically pumping a single microcrystal with 2.3 eV photons, we observe a history-dependent response of photoexcited electrons (spike), controlled by the pumping repetition rate. This neuromorphic behavior exhibits a 1 ms spike response time, a 10<sup>2</sup> on/off ratio, exceptional endurance over 13,400 cycles, and allows achieving 95% accuracy in handwritten digit recognition in three training epochs. The reported optical synapse surpasses most existing designs, paving the way for efficient and long-lasting photonic neuromorphic data processing.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 33\",\"pages\":\"47122–47129\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c06829\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c06829","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光子神经形态计算的概念提供了快速、节能和自主的数据处理,但在设计活性材料方面面临挑战,从而实现所需的性能。在这里,我们展示了一个氧化铜微晶体光学突触,展示了高效、快速和高度增强的光子神经形态计算。通过光泵浦一个具有2.3 eV光子的单微晶体,我们观察到由泵浦重复率控制的光激发电子(尖峰)的历史相关响应。这种神经形态的行为表现出1 ms的峰值响应时间,102的开/关比,超过13,400个周期的卓越耐力,并允许在三个训练时期内实现95%的手写数字识别准确率。报道的光学突触超越了大多数现有的设计,为有效和持久的光子神经形态数据处理铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photonic-Mediated Neuromorphic Computing Enabled by a Copper Oxide Microcrystal Optoelectronic Synapse

Photonic-Mediated Neuromorphic Computing Enabled by a Copper Oxide Microcrystal Optoelectronic Synapse

The concept of photonic neuromorphic computing offers fast, energy-efficient, and autonomous data processing yet faces challenges in the design of an active material, enabling the desired performance. Here, we demonstrate a copper oxide microcrystal optical synapse, demonstrating efficient, fast, and highly enhanced photonic neuromorphic computing. By optically pumping a single microcrystal with 2.3 eV photons, we observe a history-dependent response of photoexcited electrons (spike), controlled by the pumping repetition rate. This neuromorphic behavior exhibits a 1 ms spike response time, a 102 on/off ratio, exceptional endurance over 13,400 cycles, and allows achieving 95% accuracy in handwritten digit recognition in three training epochs. The reported optical synapse surpasses most existing designs, paving the way for efficient and long-lasting photonic neuromorphic data processing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信