Yao-Nan Liu, Qiu-Wen Wang, Xin-Yu She, Li-Jun Li, Bing Wang, Ruilan Yang, Qian Li, Si-Yao Lu, Ying-Han Wang, Wei Shen, Chong-Lei Fu, Dan Li, Lan Yi, Chun-Xue Wang, Wei Shi, Xin Cheng, Liping Cao, Shuangli Mi, Jun Yao
{"title":"胰腺-海马反馈机制调节抑郁相关行为的昼夜节律变化","authors":"Yao-Nan Liu, Qiu-Wen Wang, Xin-Yu She, Li-Jun Li, Bing Wang, Ruilan Yang, Qian Li, Si-Yao Lu, Ying-Han Wang, Wei Shen, Chong-Lei Fu, Dan Li, Lan Yi, Chun-Xue Wang, Wei Shi, Xin Cheng, Liping Cao, Shuangli Mi, Jun Yao","doi":"10.1038/s41593-025-02040-y","DOIUrl":null,"url":null,"abstract":"Individuals with neuropsychiatric disorders often show metabolic symptoms. However, the mechanisms underlying this co-occurrence remain unclear. Here we show that induced pluripotent stem cell-derived pancreatic islets from individuals with bipolar disorder have insulin secretion deficits caused by increased expression of RORβ, a susceptibility gene for bipolar disorder. Enhancing RORβ expression in mouse pancreatic β cells induced depression-related behaviors in the light phase and mania-like behaviors in the dark phase. Pancreatic RORβ overexpression in the light phase reduced insulin release from islets, inducing hippocampal hyperactivity and depression-like behaviors. Furthermore, this hippocampal hyperactivity in the light phase had the delayed effect of promoting insulin release in the dark phase, resulting in mania-like behaviors and hippocampal neuronal hypoactivity. Our results in mice point to a pancreas–hippocampus feedback mechanism by which metabolic and circadian factors cooperate to generate behavioral fluctuations and which may play a role in bipolar disorder. The mechanisms linking neuropsychiatric and metabolic disorders remain unclear. The authors show a pancreas–hippocampus feedback loop whereby metabolic and circadian factors drive behavioral fluctuations, with potential relevance for bipolar disorder.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"28 10","pages":"2078-2091"},"PeriodicalIF":20.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pancreas–hippocampus feedback mechanism regulates circadian changes in depression-related behaviors\",\"authors\":\"Yao-Nan Liu, Qiu-Wen Wang, Xin-Yu She, Li-Jun Li, Bing Wang, Ruilan Yang, Qian Li, Si-Yao Lu, Ying-Han Wang, Wei Shen, Chong-Lei Fu, Dan Li, Lan Yi, Chun-Xue Wang, Wei Shi, Xin Cheng, Liping Cao, Shuangli Mi, Jun Yao\",\"doi\":\"10.1038/s41593-025-02040-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Individuals with neuropsychiatric disorders often show metabolic symptoms. However, the mechanisms underlying this co-occurrence remain unclear. Here we show that induced pluripotent stem cell-derived pancreatic islets from individuals with bipolar disorder have insulin secretion deficits caused by increased expression of RORβ, a susceptibility gene for bipolar disorder. Enhancing RORβ expression in mouse pancreatic β cells induced depression-related behaviors in the light phase and mania-like behaviors in the dark phase. Pancreatic RORβ overexpression in the light phase reduced insulin release from islets, inducing hippocampal hyperactivity and depression-like behaviors. Furthermore, this hippocampal hyperactivity in the light phase had the delayed effect of promoting insulin release in the dark phase, resulting in mania-like behaviors and hippocampal neuronal hypoactivity. Our results in mice point to a pancreas–hippocampus feedback mechanism by which metabolic and circadian factors cooperate to generate behavioral fluctuations and which may play a role in bipolar disorder. The mechanisms linking neuropsychiatric and metabolic disorders remain unclear. The authors show a pancreas–hippocampus feedback loop whereby metabolic and circadian factors drive behavioral fluctuations, with potential relevance for bipolar disorder.\",\"PeriodicalId\":19076,\"journal\":{\"name\":\"Nature neuroscience\",\"volume\":\"28 10\",\"pages\":\"2078-2091\"},\"PeriodicalIF\":20.0000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41593-025-02040-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-025-02040-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A pancreas–hippocampus feedback mechanism regulates circadian changes in depression-related behaviors
Individuals with neuropsychiatric disorders often show metabolic symptoms. However, the mechanisms underlying this co-occurrence remain unclear. Here we show that induced pluripotent stem cell-derived pancreatic islets from individuals with bipolar disorder have insulin secretion deficits caused by increased expression of RORβ, a susceptibility gene for bipolar disorder. Enhancing RORβ expression in mouse pancreatic β cells induced depression-related behaviors in the light phase and mania-like behaviors in the dark phase. Pancreatic RORβ overexpression in the light phase reduced insulin release from islets, inducing hippocampal hyperactivity and depression-like behaviors. Furthermore, this hippocampal hyperactivity in the light phase had the delayed effect of promoting insulin release in the dark phase, resulting in mania-like behaviors and hippocampal neuronal hypoactivity. Our results in mice point to a pancreas–hippocampus feedback mechanism by which metabolic and circadian factors cooperate to generate behavioral fluctuations and which may play a role in bipolar disorder. The mechanisms linking neuropsychiatric and metabolic disorders remain unclear. The authors show a pancreas–hippocampus feedback loop whereby metabolic and circadian factors drive behavioral fluctuations, with potential relevance for bipolar disorder.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.