复杂细菌菌落形态的生物物理代谢模型。

IF 7.7
Cell systems Pub Date : 2025-08-20 Epub Date: 2025-08-08 DOI:10.1016/j.cels.2025.101352
Ilija Dukovski, Lauren Golden, Jing Zhang, Melisa Osborne, Daniel Segrè, Kirill S Korolev
{"title":"复杂细菌菌落形态的生物物理代谢模型。","authors":"Ilija Dukovski, Lauren Golden, Jing Zhang, Melisa Osborne, Daniel Segrè, Kirill S Korolev","doi":"10.1016/j.cels.2025.101352","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial colony growth is shaped by the physics of biomass propagation and nutrient diffusion and by the metabolic reactions that organisms activate as a function of the surrounding environment. While microbial colonies have been explored using minimal models of growth and motility, full integration of biomass propagation and metabolism is still lacking. Here, building upon our framework for computation of microbial ecosystems in time and space (COMETS), we combine dynamic flux balance modeling of metabolism with collective biomass propagation and demographic fluctuations to provide nuanced simulations of E. coli colonies. Simulations produced realistic colony morphology, consistent with our experiments. They characterize the transition between smooth and furcated colonies and the decay of genetic diversity. Furthermore, we demonstrate that under certain conditions, biomass can accumulate along \"metabolic rings\" that are reminiscent of coffee-stain rings but have a completely different origin. Our approach is a key step toward predictive microbial ecosystems modeling. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101352"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393670/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biophysical metabolic modeling of complex bacterial colony morphology.\",\"authors\":\"Ilija Dukovski, Lauren Golden, Jing Zhang, Melisa Osborne, Daniel Segrè, Kirill S Korolev\",\"doi\":\"10.1016/j.cels.2025.101352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial colony growth is shaped by the physics of biomass propagation and nutrient diffusion and by the metabolic reactions that organisms activate as a function of the surrounding environment. While microbial colonies have been explored using minimal models of growth and motility, full integration of biomass propagation and metabolism is still lacking. Here, building upon our framework for computation of microbial ecosystems in time and space (COMETS), we combine dynamic flux balance modeling of metabolism with collective biomass propagation and demographic fluctuations to provide nuanced simulations of E. coli colonies. Simulations produced realistic colony morphology, consistent with our experiments. They characterize the transition between smooth and furcated colonies and the decay of genetic diversity. Furthermore, we demonstrate that under certain conditions, biomass can accumulate along \\\"metabolic rings\\\" that are reminiscent of coffee-stain rings but have a completely different origin. Our approach is a key step toward predictive microbial ecosystems modeling. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101352\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393670/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微生物菌落的生长是由生物量繁殖和营养物质扩散的物理特性以及生物体作为周围环境的功能而激活的代谢反应所决定的。虽然微生物菌落已经使用最小的生长和运动模型进行了探索,但生物量繁殖和代谢的完全整合仍然缺乏。在此,基于我们的时空微生物生态系统计算框架(COMETS),我们将代谢的动态通量平衡模型与集体生物量繁殖和人口波动相结合,以提供大肠杆菌菌落的细致模拟。模拟产生了真实的菌落形态,与我们的实验一致。它们的特征是平滑和分叉菌落之间的过渡以及遗传多样性的衰减。此外,我们证明,在某些条件下,生物量可以沿着“代谢环”积累,这让人想起咖啡污渍环,但起源完全不同。我们的方法是预测微生物生态系统建模的关键一步。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biophysical metabolic modeling of complex bacterial colony morphology.

Microbial colony growth is shaped by the physics of biomass propagation and nutrient diffusion and by the metabolic reactions that organisms activate as a function of the surrounding environment. While microbial colonies have been explored using minimal models of growth and motility, full integration of biomass propagation and metabolism is still lacking. Here, building upon our framework for computation of microbial ecosystems in time and space (COMETS), we combine dynamic flux balance modeling of metabolism with collective biomass propagation and demographic fluctuations to provide nuanced simulations of E. coli colonies. Simulations produced realistic colony morphology, consistent with our experiments. They characterize the transition between smooth and furcated colonies and the decay of genetic diversity. Furthermore, we demonstrate that under certain conditions, biomass can accumulate along "metabolic rings" that are reminiscent of coffee-stain rings but have a completely different origin. Our approach is a key step toward predictive microbial ecosystems modeling. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信