多发性硬化症中恐惧和焦虑的神经行为机制。

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Lil Meyer-Arndt, Rebekka Rust, Judith Bellmann-Strobl, Tanja Schmitz-Hübsch, Lajos Marko, Sofia Forslund, Michael Scheel, Stefan M Gold, Stefan Hetzer, Friedemann Paul, Martin Weygandt
{"title":"多发性硬化症中恐惧和焦虑的神经行为机制。","authors":"Lil Meyer-Arndt, Rebekka Rust, Judith Bellmann-Strobl, Tanja Schmitz-Hübsch, Lajos Marko, Sofia Forslund, Michael Scheel, Stefan M Gold, Stefan Hetzer, Friedemann Paul, Martin Weygandt","doi":"10.1038/s43856-025-01085-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anxiety is a common yet often underdiagnosed and undertreated comorbidity in multiple sclerosis (MS). While altered fear processing is a hallmark of anxiety in other populations, its neurobehavioral mechanisms in MS remain poorly understood. This study investigates the extent to which neurobehavioral mechanisms of fear generalization contribute to anxiety in MS.</p><p><strong>Methods: </strong>We recruited 18 persons with MS (PwMS) and anxiety, 36 PwMS without anxiety, and 23 healthy persons (HPs). Participants completed a functional MRI (fMRI) fear generalization task to assess fear processing and diffusion-weighted MRI for graph-based structural connectome analyses.</p><p><strong>Results: </strong>Consistent with findings in non-MS anxiety populations, PwMS with anxiety exhibit fear overgeneralization, perceiving non-threating stimuli as threatening. A machine learning model trained on HPs in a multivariate pattern analysis (MVPA) cross-decoding approach accurately predicts behavioral fear generalization in both MS groups using whole-brain fMRI fear response patterns. Regional fMRI prediction and graph-based structural connectivity analyses reveal that fear response activity and structural network integrity of partially overlapping areas, such as hippocampus (for fear stimulus comparison) and anterior insula (for fear excitation), are crucial for MS fear generalization. Reduced network integrity in such regions is a direct indicator of MS anxiety.</p><p><strong>Conclusions: </strong>Our findings demonstrate that MS anxiety is substantially characterized by fear overgeneralization. The fact that a machine learning model trained to associate fMRI fear response patterns with fear ratings in HPs predicts fear ratings from fMRI data across MS groups using an MVPA cross-decoding approach suggests that generic fear processing mechanisms substantially contribute to anxiety in MS.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"345"},"PeriodicalIF":5.4000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335550/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neurobehavioral mechanisms of fear and anxiety in multiple sclerosis.\",\"authors\":\"Lil Meyer-Arndt, Rebekka Rust, Judith Bellmann-Strobl, Tanja Schmitz-Hübsch, Lajos Marko, Sofia Forslund, Michael Scheel, Stefan M Gold, Stefan Hetzer, Friedemann Paul, Martin Weygandt\",\"doi\":\"10.1038/s43856-025-01085-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Anxiety is a common yet often underdiagnosed and undertreated comorbidity in multiple sclerosis (MS). While altered fear processing is a hallmark of anxiety in other populations, its neurobehavioral mechanisms in MS remain poorly understood. This study investigates the extent to which neurobehavioral mechanisms of fear generalization contribute to anxiety in MS.</p><p><strong>Methods: </strong>We recruited 18 persons with MS (PwMS) and anxiety, 36 PwMS without anxiety, and 23 healthy persons (HPs). Participants completed a functional MRI (fMRI) fear generalization task to assess fear processing and diffusion-weighted MRI for graph-based structural connectome analyses.</p><p><strong>Results: </strong>Consistent with findings in non-MS anxiety populations, PwMS with anxiety exhibit fear overgeneralization, perceiving non-threating stimuli as threatening. A machine learning model trained on HPs in a multivariate pattern analysis (MVPA) cross-decoding approach accurately predicts behavioral fear generalization in both MS groups using whole-brain fMRI fear response patterns. Regional fMRI prediction and graph-based structural connectivity analyses reveal that fear response activity and structural network integrity of partially overlapping areas, such as hippocampus (for fear stimulus comparison) and anterior insula (for fear excitation), are crucial for MS fear generalization. Reduced network integrity in such regions is a direct indicator of MS anxiety.</p><p><strong>Conclusions: </strong>Our findings demonstrate that MS anxiety is substantially characterized by fear overgeneralization. The fact that a machine learning model trained to associate fMRI fear response patterns with fear ratings in HPs predicts fear ratings from fMRI data across MS groups using an MVPA cross-decoding approach suggests that generic fear processing mechanisms substantially contribute to anxiety in MS.</p>\",\"PeriodicalId\":72646,\"journal\":{\"name\":\"Communications medicine\",\"volume\":\"5 1\",\"pages\":\"345\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335550/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43856-025-01085-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-01085-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:焦虑是多发性硬化症(MS)中一种常见但常被误诊和治疗不足的合并症。虽然改变的恐惧处理是其他人群焦虑的标志,但其在多发性硬化症中的神经行为机制仍然知之甚少。本研究探讨了MS患者恐惧泛化的神经行为机制在多大程度上促进了MS患者的焦虑。方法:我们招募了18名合并焦虑的MS患者,36名无焦虑的PwMS患者和23名健康人。参与者完成了功能性核磁共振成像(fMRI)恐惧泛化任务来评估恐惧处理和扩散加权核磁共振成像用于基于图的结构连接体分析。结果:与非ms焦虑人群的发现一致,焦虑的PwMS表现出恐惧过度概括,将非威胁性刺激视为威胁性。在多变量模式分析(MVPA)交叉解码方法中训练HPs的机器学习模型使用全脑fMRI恐惧反应模式准确预测两个MS组的行为恐惧泛化。区域fMRI预测和基于图的结构连通性分析表明,部分重叠区域的恐惧反应活动和结构网络完整性,如海马(恐惧刺激比较)和前脑岛(恐惧激发),对MS恐惧概括至关重要。这些区域的网络完整性降低是MS焦虑的直接指标。结论:我们的研究结果表明,MS焦虑的本质特征是恐惧过度概括。事实上,一个机器学习模型经过训练,将fMRI恐惧反应模式与HPs的恐惧等级联系起来,使用MVPA交叉解码方法,从MS组的fMRI数据中预测恐惧等级,这表明一般的恐惧处理机制在很大程度上促进了MS的焦虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neurobehavioral mechanisms of fear and anxiety in multiple sclerosis.

Background: Anxiety is a common yet often underdiagnosed and undertreated comorbidity in multiple sclerosis (MS). While altered fear processing is a hallmark of anxiety in other populations, its neurobehavioral mechanisms in MS remain poorly understood. This study investigates the extent to which neurobehavioral mechanisms of fear generalization contribute to anxiety in MS.

Methods: We recruited 18 persons with MS (PwMS) and anxiety, 36 PwMS without anxiety, and 23 healthy persons (HPs). Participants completed a functional MRI (fMRI) fear generalization task to assess fear processing and diffusion-weighted MRI for graph-based structural connectome analyses.

Results: Consistent with findings in non-MS anxiety populations, PwMS with anxiety exhibit fear overgeneralization, perceiving non-threating stimuli as threatening. A machine learning model trained on HPs in a multivariate pattern analysis (MVPA) cross-decoding approach accurately predicts behavioral fear generalization in both MS groups using whole-brain fMRI fear response patterns. Regional fMRI prediction and graph-based structural connectivity analyses reveal that fear response activity and structural network integrity of partially overlapping areas, such as hippocampus (for fear stimulus comparison) and anterior insula (for fear excitation), are crucial for MS fear generalization. Reduced network integrity in such regions is a direct indicator of MS anxiety.

Conclusions: Our findings demonstrate that MS anxiety is substantially characterized by fear overgeneralization. The fact that a machine learning model trained to associate fMRI fear response patterns with fear ratings in HPs predicts fear ratings from fMRI data across MS groups using an MVPA cross-decoding approach suggests that generic fear processing mechanisms substantially contribute to anxiety in MS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信