基于服务器旋转联合机器学习的协作和隐私保护跨厂商联合诊断成像。

Hao Wang, Xiaoyu Zhang, Xuebin Ren, Zheng Zhang, Shusen Yang, Chunfeng Lian, Jianhua Ma, Dong Zeng
{"title":"基于服务器旋转联合机器学习的协作和隐私保护跨厂商联合诊断成像。","authors":"Hao Wang, Xiaoyu Zhang, Xuebin Ren, Zheng Zhang, Shusen Yang, Chunfeng Lian, Jianhua Ma, Dong Zeng","doi":"10.1038/s44172-025-00485-4","DOIUrl":null,"url":null,"abstract":"<p><p>Federated Learning (FL) is a distributed framework that enables collaborative training of a server model across medical data vendors while preserving data privacy. However, conventional FL faces two key challenges: substantial data heterogeneity among vendors and limited flexibility from a fixed server, leading to suboptimal performance in diagnostic-imaging tasks. To address these, we propose a server-rotating federated learning method (SRFLM). Unlike traditional FL, SRFLM designates one vendor as a provisional server for federated fine-tuning, with others acting as clients. It uses a rotational server-communication mechanism and a dynamic server-election strategy, allowing each vendor to sequentially assume the server role over time. Additionally, the communication protocol of SRFLM provides strong privacy guarantees using differential privacy. We extensively evaluate SRFLM across multiple cross-vendor diagnostic imaging tasks. We envision SRFLM as paving the way to facilitate collaborative model training across medical data vendors, thereby achieving the goal of cross-vendor united diagnostic imaging.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"148"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335533/pdf/","citationCount":"0","resultStr":"{\"title\":\"Collaborative and privacy-preserving cross-vendor united diagnostic imaging via server-rotating federated machine learning.\",\"authors\":\"Hao Wang, Xiaoyu Zhang, Xuebin Ren, Zheng Zhang, Shusen Yang, Chunfeng Lian, Jianhua Ma, Dong Zeng\",\"doi\":\"10.1038/s44172-025-00485-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Federated Learning (FL) is a distributed framework that enables collaborative training of a server model across medical data vendors while preserving data privacy. However, conventional FL faces two key challenges: substantial data heterogeneity among vendors and limited flexibility from a fixed server, leading to suboptimal performance in diagnostic-imaging tasks. To address these, we propose a server-rotating federated learning method (SRFLM). Unlike traditional FL, SRFLM designates one vendor as a provisional server for federated fine-tuning, with others acting as clients. It uses a rotational server-communication mechanism and a dynamic server-election strategy, allowing each vendor to sequentially assume the server role over time. Additionally, the communication protocol of SRFLM provides strong privacy guarantees using differential privacy. We extensively evaluate SRFLM across multiple cross-vendor diagnostic imaging tasks. We envision SRFLM as paving the way to facilitate collaborative model training across medical data vendors, thereby achieving the goal of cross-vendor united diagnostic imaging.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335533/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00485-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00485-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)是一种分布式框架,支持跨医疗数据供应商协作训练服务器模型,同时保护数据隐私。然而,传统的FL面临两个关键挑战:供应商之间的大量数据异构性和固定服务器的有限灵活性,导致诊断成像任务的性能不理想。为了解决这些问题,我们提出了一种服务器旋转联邦学习方法(SRFLM)。与传统FL不同,SRFLM指定一个供应商作为联邦微调的临时服务器,其他供应商作为客户端。它使用轮流服务器通信机制和动态服务器选举策略,允许每个供应商在一段时间内依次承担服务器角色。此外,SRFLM的通信协议使用差分隐私提供了强大的隐私保证。我们在多个跨供应商诊断成像任务中广泛评估SRFLM。我们设想SRFLM为促进跨医疗数据供应商的协作模型培训铺平道路,从而实现跨供应商联合诊断成像的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative and privacy-preserving cross-vendor united diagnostic imaging via server-rotating federated machine learning.

Federated Learning (FL) is a distributed framework that enables collaborative training of a server model across medical data vendors while preserving data privacy. However, conventional FL faces two key challenges: substantial data heterogeneity among vendors and limited flexibility from a fixed server, leading to suboptimal performance in diagnostic-imaging tasks. To address these, we propose a server-rotating federated learning method (SRFLM). Unlike traditional FL, SRFLM designates one vendor as a provisional server for federated fine-tuning, with others acting as clients. It uses a rotational server-communication mechanism and a dynamic server-election strategy, allowing each vendor to sequentially assume the server role over time. Additionally, the communication protocol of SRFLM provides strong privacy guarantees using differential privacy. We extensively evaluate SRFLM across multiple cross-vendor diagnostic imaging tasks. We envision SRFLM as paving the way to facilitate collaborative model training across medical data vendors, thereby achieving the goal of cross-vendor united diagnostic imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信