由层粘连蛋白a /C错义变异引起的早发性多瓣疾病

IF 3.6 Q2 GENETICS & HEREDITY
HGG Advances Pub Date : 2025-10-09 Epub Date: 2025-08-08 DOI:10.1016/j.xhgg.2025.100491
Alexandre Janin, Nathalie Gaudreault, Victoria Saavedra Armero, Zhonglin Li, Ran Xu, Dominique K Boudreau, Lily Frenette, Julien Ternacle, Danielle Tardif, Sébastien Thériault, Philippe Pibarot, Patrick Mathieu, Christian Steinberg, Yohan Bossé
{"title":"由层粘连蛋白a /C错义变异引起的早发性多瓣疾病","authors":"Alexandre Janin, Nathalie Gaudreault, Victoria Saavedra Armero, Zhonglin Li, Ran Xu, Dominique K Boudreau, Lily Frenette, Julien Ternacle, Danielle Tardif, Sébastien Thériault, Philippe Pibarot, Patrick Mathieu, Christian Steinberg, Yohan Bossé","doi":"10.1016/j.xhgg.2025.100491","DOIUrl":null,"url":null,"abstract":"<p><p>Lamins A/C, coded by LMNA gene, are crucial for nuclear architecture preservation. Pathogenic LMNA variants cause a wide range of inherited diseases called \"laminopathies\". A subgroup is referred to \"progeroid syndromes\" characterized by premature aging and other manifestations including cardiac valve abnormalities. Atypical phenotypes, generally less severe, have also been reported. We report the case of a 26-year-old male with calcific tricuspid aortic and mitral valve diseases. His father was diagnosed with severe aortic valve stenosis and mitral annulus calcification at the age of 38. The goal of this study was to identify the putative variant causing this non-syndromic multivalvular disease. Known disease-causing variants in NOTCH1, FLNA, and DCHS1 were first excluded by Sanger sequencing. Whole-exome sequencing was then performed in five family members. A LMNA variant (p.Glu262Val) was identified with in silico evidences of pathogenicity (CADD [combined annotation dependent depletion] = 33). Cells transfected with the cDNA construct harboring p.Glu262Val were characterized by abnormal nuclear morphology. Along with a literature review, the variant was classified as likely pathogenic. Elucidating the mechanism by which LMNA p.Glu262Val specifically affects cardiac heart valves is likely to provide insight about the pathogenesis of Mendelian forms of valvular heart diseases and may help guide the development of therapies.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100491"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398237/pdf/","citationCount":"0","resultStr":"{\"title\":\"Early-onset multivalvular disease caused by a missense variant in lamin A/C.\",\"authors\":\"Alexandre Janin, Nathalie Gaudreault, Victoria Saavedra Armero, Zhonglin Li, Ran Xu, Dominique K Boudreau, Lily Frenette, Julien Ternacle, Danielle Tardif, Sébastien Thériault, Philippe Pibarot, Patrick Mathieu, Christian Steinberg, Yohan Bossé\",\"doi\":\"10.1016/j.xhgg.2025.100491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lamins A/C, coded by LMNA gene, are crucial for nuclear architecture preservation. Pathogenic LMNA variants cause a wide range of inherited diseases called \\\"laminopathies\\\". A subgroup is referred to \\\"progeroid syndromes\\\" characterized by premature aging and other manifestations including cardiac valve abnormalities. Atypical phenotypes, generally less severe, have also been reported. We report the case of a 26-year-old male with calcific tricuspid aortic and mitral valve diseases. His father was diagnosed with severe aortic valve stenosis and mitral annulus calcification at the age of 38. The goal of this study was to identify the putative variant causing this non-syndromic multivalvular disease. Known disease-causing variants in NOTCH1, FLNA, and DCHS1 were first excluded by Sanger sequencing. Whole-exome sequencing was then performed in five family members. A LMNA variant (p.Glu262Val) was identified with in silico evidences of pathogenicity (CADD [combined annotation dependent depletion] = 33). Cells transfected with the cDNA construct harboring p.Glu262Val were characterized by abnormal nuclear morphology. Along with a literature review, the variant was classified as likely pathogenic. Elucidating the mechanism by which LMNA p.Glu262Val specifically affects cardiac heart valves is likely to provide insight about the pathogenesis of Mendelian forms of valvular heart diseases and may help guide the development of therapies.</p>\",\"PeriodicalId\":34530,\"journal\":{\"name\":\"HGG Advances\",\"volume\":\" \",\"pages\":\"100491\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398237/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HGG Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xhgg.2025.100491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

由LMNA基因编码的层粘胶蛋白A/C对核结构保存起着至关重要的作用。致病性LMNA变异引起广泛的遗传性疾病,称为“层板病”。一个亚组被称为“类早衰综合征”,其特征是过早衰老和其他表现,包括心脏瓣膜异常。非典型表型,通常不太严重,也有报道。我们报告一例26岁男性钙化三尖瓣主动脉和二尖瓣疾病。他的父亲在38岁时被诊断出患有严重的主动脉瓣狭窄和二尖瓣环钙化。本研究的目的是确定引起这种非综合征性多瓣疾病的推定变异。已知的NOTCH1、FLNA和DCHS1致病变异首先通过Sanger测序排除。然后对五个家庭成员进行全外显子组测序。一个LMNA变异(p.g ul262val)被鉴定出具有致病性的计算机证据(CADD=33)。携带p.g ul262val的cDNA构建体转染细胞后,细胞核形态发生异常。与文献综述一起,该变异被归类为可能致病。阐明LMNA p.g ul262val特异性影响心脏瓣膜的机制,可能有助于了解孟德尔型瓣膜性心脏病的发病机制,并有助于指导治疗方法的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Early-onset multivalvular disease caused by a missense variant in lamin A/C.

Lamins A/C, coded by LMNA gene, are crucial for nuclear architecture preservation. Pathogenic LMNA variants cause a wide range of inherited diseases called "laminopathies". A subgroup is referred to "progeroid syndromes" characterized by premature aging and other manifestations including cardiac valve abnormalities. Atypical phenotypes, generally less severe, have also been reported. We report the case of a 26-year-old male with calcific tricuspid aortic and mitral valve diseases. His father was diagnosed with severe aortic valve stenosis and mitral annulus calcification at the age of 38. The goal of this study was to identify the putative variant causing this non-syndromic multivalvular disease. Known disease-causing variants in NOTCH1, FLNA, and DCHS1 were first excluded by Sanger sequencing. Whole-exome sequencing was then performed in five family members. A LMNA variant (p.Glu262Val) was identified with in silico evidences of pathogenicity (CADD [combined annotation dependent depletion] = 33). Cells transfected with the cDNA construct harboring p.Glu262Val were characterized by abnormal nuclear morphology. Along with a literature review, the variant was classified as likely pathogenic. Elucidating the mechanism by which LMNA p.Glu262Val specifically affects cardiac heart valves is likely to provide insight about the pathogenesis of Mendelian forms of valvular heart diseases and may help guide the development of therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信