温室番茄作物需水量预测中多源数据集成最大化和参数最小化。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xinyue Lv, Youli Li, Lili Zhangzhong, Chaoyang Tong, Yibo Wei, Guangwei Li, Yingru Yang
{"title":"温室番茄作物需水量预测中多源数据集成最大化和参数最小化。","authors":"Xinyue Lv, Youli Li, Lili Zhangzhong, Chaoyang Tong, Yibo Wei, Guangwei Li, Yingru Yang","doi":"10.1038/s41598-025-12324-9","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate scientific predicting of water requirements for protected agriculture crops is essential for informed irrigation management. The Penman-Monteith model, endorsed by the Food and Agriculture Organization of the United Nations (FAO), is currently the predominant approach for estimating crop water needs. However, the complexity of its numerous parameters and the potential for empirical parameter inaccuracies pose significant challenges to precise water requirement predictions. In this study, we introduce a novel water demand prediction model for greenhouse tomato crops that leverages multi-source data fusion. We employed the ExG (Excess Green) algorithm and the maximum inter-class variance method to develop an algorithm for extracting canopy coverage from image segmentation. Subsequently, Spearman correlation analysis was utilized to select the combination of canopy coverage and environmental data, followed by the random forest feature importance ranking method to identify the most optimal feature variables. We constructed average fusion, weighted fusion, and stacking fusion models based on RandomForest, LightGBM, and CatBoost machine learning algorithms to accurately predict the water requirements of greenhouse tomato crops. The results show that the stacking model has the best prediction effect, and the error is lower than that of RandomForest, LightGBM, CatBoost, Average fusion model and Weighted fusion model. The feature combination of Tmax, Ts, and CC, filtered using Spearman and RandomForest, demonstrated the lowest prediction errors, with reductions in MSE, MAE, and RMSE of over 4%, 14%, and 3%, respectively, compared to other parameter combinations. The R<sup>2</sup> value increased by 1%, indicating enhanced reliability and generalization. This research comprehensively considered various factors, including environmental, soil, and crop growth conditions, that influence crop water requirements. By integrating image and environmental data, we developed a water requirement prediction model for greenhouse tomato crops based on the principles of decoupling and minimizing characteristic parameters, offering innovative technical support for scientific irrigation practices.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"29161"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335453/pdf/","citationCount":"0","resultStr":"{\"title\":\"Maximizing multi-source data integration and minimizing the parameters for greenhouse tomato crop water requirement prediction.\",\"authors\":\"Xinyue Lv, Youli Li, Lili Zhangzhong, Chaoyang Tong, Yibo Wei, Guangwei Li, Yingru Yang\",\"doi\":\"10.1038/s41598-025-12324-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate scientific predicting of water requirements for protected agriculture crops is essential for informed irrigation management. The Penman-Monteith model, endorsed by the Food and Agriculture Organization of the United Nations (FAO), is currently the predominant approach for estimating crop water needs. However, the complexity of its numerous parameters and the potential for empirical parameter inaccuracies pose significant challenges to precise water requirement predictions. In this study, we introduce a novel water demand prediction model for greenhouse tomato crops that leverages multi-source data fusion. We employed the ExG (Excess Green) algorithm and the maximum inter-class variance method to develop an algorithm for extracting canopy coverage from image segmentation. Subsequently, Spearman correlation analysis was utilized to select the combination of canopy coverage and environmental data, followed by the random forest feature importance ranking method to identify the most optimal feature variables. We constructed average fusion, weighted fusion, and stacking fusion models based on RandomForest, LightGBM, and CatBoost machine learning algorithms to accurately predict the water requirements of greenhouse tomato crops. The results show that the stacking model has the best prediction effect, and the error is lower than that of RandomForest, LightGBM, CatBoost, Average fusion model and Weighted fusion model. The feature combination of Tmax, Ts, and CC, filtered using Spearman and RandomForest, demonstrated the lowest prediction errors, with reductions in MSE, MAE, and RMSE of over 4%, 14%, and 3%, respectively, compared to other parameter combinations. The R<sup>2</sup> value increased by 1%, indicating enhanced reliability and generalization. This research comprehensively considered various factors, including environmental, soil, and crop growth conditions, that influence crop water requirements. By integrating image and environmental data, we developed a water requirement prediction model for greenhouse tomato crops based on the principles of decoupling and minimizing characteristic parameters, offering innovative technical support for scientific irrigation practices.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"29161\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335453/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-12324-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12324-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

准确科学地预测受保护农业作物的需水量对知情灌溉管理至关重要。联合国粮食及农业组织(粮农组织)认可的Penman-Monteith模型是目前估计作物需水量的主要方法。然而,其众多参数的复杂性和潜在的经验参数不准确性对精确的需水量预测构成了重大挑战。在本研究中,我们引入了一种利用多源数据融合的温室番茄作物需水量预测模型。利用ExG (Excess Green)算法和最大类间方差法,提出了一种从图像分割中提取冠层覆盖度的算法。随后,利用Spearman相关分析选择冠层覆盖度与环境数据的组合,再采用随机森林特征重要度排序法识别最优特征变量。基于RandomForest、LightGBM和CatBoost机器学习算法构建了平均融合、加权融合和叠加融合模型,以准确预测温室番茄作物的需水量。结果表明,叠加模型预测效果最好,误差小于RandomForest、LightGBM、CatBoost、Average融合模型和Weighted融合模型。使用Spearman和RandomForest过滤的Tmax、Ts和CC的特征组合显示出最低的预测误差,与其他参数组合相比,MSE、MAE和RMSE分别降低了4%、14%和3%以上。R2值提高1%,表明可靠性和通用性增强。本研究综合考虑了影响作物需水量的各种因素,包括环境、土壤和作物生长条件。基于解耦和特征参数最小化原理,将图像与环境数据相结合,建立了温室番茄作物需水量预测模型,为科学灌溉提供创新技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximizing multi-source data integration and minimizing the parameters for greenhouse tomato crop water requirement prediction.

Accurate scientific predicting of water requirements for protected agriculture crops is essential for informed irrigation management. The Penman-Monteith model, endorsed by the Food and Agriculture Organization of the United Nations (FAO), is currently the predominant approach for estimating crop water needs. However, the complexity of its numerous parameters and the potential for empirical parameter inaccuracies pose significant challenges to precise water requirement predictions. In this study, we introduce a novel water demand prediction model for greenhouse tomato crops that leverages multi-source data fusion. We employed the ExG (Excess Green) algorithm and the maximum inter-class variance method to develop an algorithm for extracting canopy coverage from image segmentation. Subsequently, Spearman correlation analysis was utilized to select the combination of canopy coverage and environmental data, followed by the random forest feature importance ranking method to identify the most optimal feature variables. We constructed average fusion, weighted fusion, and stacking fusion models based on RandomForest, LightGBM, and CatBoost machine learning algorithms to accurately predict the water requirements of greenhouse tomato crops. The results show that the stacking model has the best prediction effect, and the error is lower than that of RandomForest, LightGBM, CatBoost, Average fusion model and Weighted fusion model. The feature combination of Tmax, Ts, and CC, filtered using Spearman and RandomForest, demonstrated the lowest prediction errors, with reductions in MSE, MAE, and RMSE of over 4%, 14%, and 3%, respectively, compared to other parameter combinations. The R2 value increased by 1%, indicating enhanced reliability and generalization. This research comprehensively considered various factors, including environmental, soil, and crop growth conditions, that influence crop water requirements. By integrating image and environmental data, we developed a water requirement prediction model for greenhouse tomato crops based on the principles of decoupling and minimizing characteristic parameters, offering innovative technical support for scientific irrigation practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信