长话语中发声相位的脑电图振荡和相关脑发生器。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Said-Iraj Hashemi, Guy Cheron, Didier Demolin, Ana Maria Cebolla
{"title":"长话语中发声相位的脑电图振荡和相关脑发生器。","authors":"Said-Iraj Hashemi, Guy Cheron, Didier Demolin, Ana Maria Cebolla","doi":"10.1038/s41598-025-13901-8","DOIUrl":null,"url":null,"abstract":"<p><p>While the role of brain rhythms in respiratory and speech motor control has been mainly explored during brief utterances, the specific involvement of brain rhythms in the transition of regulating subglottic pressure phases which are concomitant to specific muscle activation during prolonged phonation remains unexplored. This study investigates whether power spectral variations of the electroencephalogram brain rhythms are related specifically to prolonged phonation phases. High-density EEG and surface EMG were recorded in nineteen healthy participants while they repeatedly produced the syllable [pa] without taking a new breath, until reaching respiratory exhaustion. Aerodynamic, acoustic, and electrophysiological signals were analyzed to detect the brain areas involved in different phases of prolonged phonation. Each phase was defined by successive thoracic and abdominal muscle activity maintaining estimated subglottic pressure. The results showed significant changes in power spectrum, with desynchronization and synchronization in delta, theta, low-alpha, and high-alpha bands during transitions among the phases. Brain source analysis estimated that the first phase (P1), associated with vocal initiation and elastic rib cage recoil, involved frontal regions, suggesting a key role in voluntary phonation preparation. Subsequent phases (P2, P3, P4) showed multiband dynamics, engaging motor and premotor cortices, anterior cingulate, sensorimotor regions, thalamus, and cerebellum, indicating progressive adaptation and fine-tuning of respiratory and articulatory muscle control. Additionally, the involvement of temporal and insular regions in delta rhythm suggests a role in maintaining phonetic representation and preventing spontaneous verbal transformations. These findings provide new insights into the mechanisms and brain regions involved in prolonged phonation. These findings pave the way for applications in vocal brain-machine interfaces, clinical biofeedback for respiratory and vocal disorders, and the development of more ecologically valid paradigms in speech neuroscience.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"29150"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335572/pdf/","citationCount":"0","resultStr":"{\"title\":\"EEG oscillations and related brain generators of phonation phases in long utterances.\",\"authors\":\"Said-Iraj Hashemi, Guy Cheron, Didier Demolin, Ana Maria Cebolla\",\"doi\":\"10.1038/s41598-025-13901-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While the role of brain rhythms in respiratory and speech motor control has been mainly explored during brief utterances, the specific involvement of brain rhythms in the transition of regulating subglottic pressure phases which are concomitant to specific muscle activation during prolonged phonation remains unexplored. This study investigates whether power spectral variations of the electroencephalogram brain rhythms are related specifically to prolonged phonation phases. High-density EEG and surface EMG were recorded in nineteen healthy participants while they repeatedly produced the syllable [pa] without taking a new breath, until reaching respiratory exhaustion. Aerodynamic, acoustic, and electrophysiological signals were analyzed to detect the brain areas involved in different phases of prolonged phonation. Each phase was defined by successive thoracic and abdominal muscle activity maintaining estimated subglottic pressure. The results showed significant changes in power spectrum, with desynchronization and synchronization in delta, theta, low-alpha, and high-alpha bands during transitions among the phases. Brain source analysis estimated that the first phase (P1), associated with vocal initiation and elastic rib cage recoil, involved frontal regions, suggesting a key role in voluntary phonation preparation. Subsequent phases (P2, P3, P4) showed multiband dynamics, engaging motor and premotor cortices, anterior cingulate, sensorimotor regions, thalamus, and cerebellum, indicating progressive adaptation and fine-tuning of respiratory and articulatory muscle control. Additionally, the involvement of temporal and insular regions in delta rhythm suggests a role in maintaining phonetic representation and preventing spontaneous verbal transformations. These findings provide new insights into the mechanisms and brain regions involved in prolonged phonation. These findings pave the way for applications in vocal brain-machine interfaces, clinical biofeedback for respiratory and vocal disorders, and the development of more ecologically valid paradigms in speech neuroscience.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"29150\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335572/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-13901-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-13901-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

虽然脑节律在呼吸和言语运动控制中的作用主要在简短的话语中被探索,但脑节律在调节声门下压力阶段的过渡中的具体参与仍未被探索,声门下压力阶段伴随着长时间发声时的特定肌肉激活。本研究探讨脑电图脑节律的功率谱变化是否与发声期延长有关。19名健康参与者反复发音节[pa]而不呼吸,直到呼吸衰竭,高密度脑电图和表面肌电图被记录下来。研究人员分析了空气动力学、声学和电生理信号,以检测参与长时间发声不同阶段的大脑区域。每个阶段通过连续的胸肌和腹肌活动来定义,以维持估计的声门下压力。结果表明,在相位转换过程中,δ、θ、低α和高α波段的功率谱发生了明显的非同步和同步变化。脑源分析估计,与发声起始和弹性胸腔后坐力相关的第一阶段(P1)涉及额叶区域,表明在自主发声准备中起关键作用。随后的阶段(P2、P3、P4)显示出多波段动力学,涉及运动和运动前皮质、前扣带、感觉运动区、丘脑和小脑,表明呼吸和关节肌控制的进行性适应和微调。此外,三角洲节奏中颞叶和岛叶区域的参与表明,它们在维持语音表征和防止自发的言语转换中起作用。这些发现为研究长时间发声的机制和大脑区域提供了新的见解。这些发现为语音脑机接口、呼吸和语音疾病的临床生物反馈以及语音神经科学中更多生态有效范式的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EEG oscillations and related brain generators of phonation phases in long utterances.

While the role of brain rhythms in respiratory and speech motor control has been mainly explored during brief utterances, the specific involvement of brain rhythms in the transition of regulating subglottic pressure phases which are concomitant to specific muscle activation during prolonged phonation remains unexplored. This study investigates whether power spectral variations of the electroencephalogram brain rhythms are related specifically to prolonged phonation phases. High-density EEG and surface EMG were recorded in nineteen healthy participants while they repeatedly produced the syllable [pa] without taking a new breath, until reaching respiratory exhaustion. Aerodynamic, acoustic, and electrophysiological signals were analyzed to detect the brain areas involved in different phases of prolonged phonation. Each phase was defined by successive thoracic and abdominal muscle activity maintaining estimated subglottic pressure. The results showed significant changes in power spectrum, with desynchronization and synchronization in delta, theta, low-alpha, and high-alpha bands during transitions among the phases. Brain source analysis estimated that the first phase (P1), associated with vocal initiation and elastic rib cage recoil, involved frontal regions, suggesting a key role in voluntary phonation preparation. Subsequent phases (P2, P3, P4) showed multiband dynamics, engaging motor and premotor cortices, anterior cingulate, sensorimotor regions, thalamus, and cerebellum, indicating progressive adaptation and fine-tuning of respiratory and articulatory muscle control. Additionally, the involvement of temporal and insular regions in delta rhythm suggests a role in maintaining phonetic representation and preventing spontaneous verbal transformations. These findings provide new insights into the mechanisms and brain regions involved in prolonged phonation. These findings pave the way for applications in vocal brain-machine interfaces, clinical biofeedback for respiratory and vocal disorders, and the development of more ecologically valid paradigms in speech neuroscience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信