支持基于深度学习的乳房肿瘤切除术显微pet - ct自动分割术中边缘评估。

IF 7.6 2区 医学 Q1 ONCOLOGY
Luna Maris, Menekse Göker, Kathia De Man, Bliede Van den Broeck, Sofie Van Hoecke, Koen Van de Vijver, Christian Vanhove, Vincent Keereman
{"title":"支持基于深度学习的乳房肿瘤切除术显微pet - ct自动分割术中边缘评估。","authors":"Luna Maris, Menekse Göker, Kathia De Man, Bliede Van den Broeck, Sofie Van Hoecke, Koen Van de Vijver, Christian Vanhove, Vincent Keereman","doi":"10.1038/s41523-025-00797-w","DOIUrl":null,"url":null,"abstract":"<p><p>Complete tumour removal is vital in curative breast cancer (BCa) surgery to prevent recurrence. Recently, [<sup>18</sup>F]FDG micro-PET-CT of lumpectomy specimens has shown promise for intraoperative margin assessment (IMA). To aid interpretation, we trained a 2D Residual U-Net to delineate invasive carcinoma of no special type in micro-PET-CT lumpectomy images. We collected 53 BCa lamella images from 19 patients with true histopathology-defined tumour segmentations. Group five-fold cross-validation yielded a dice similarity coefficient of 0.71 ± 0.20 for segmentation. Afterwards, an ensemble model was generated to segment tumours and predict margin status. Comparing predicted and true histopathological margin status in a separate set of 31 micro-PET-CT lumpectomy images of 31 patients achieved an F1 score of 84%, closely matching the mean performance of seven physicians who manually interpreted the same images. This model represents an important step towards a decision-support system that enhances micro-PET-CT-based IMA in BCa, facilitating its clinical adoption.</p>","PeriodicalId":19247,"journal":{"name":"NPJ Breast Cancer","volume":"11 1","pages":"88"},"PeriodicalIF":7.6000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335567/pdf/","citationCount":"0","resultStr":"{\"title\":\"Supporting intraoperative margin assessment using deep learning for automatic tumour segmentation in breast lumpectomy micro-PET-CT.\",\"authors\":\"Luna Maris, Menekse Göker, Kathia De Man, Bliede Van den Broeck, Sofie Van Hoecke, Koen Van de Vijver, Christian Vanhove, Vincent Keereman\",\"doi\":\"10.1038/s41523-025-00797-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Complete tumour removal is vital in curative breast cancer (BCa) surgery to prevent recurrence. Recently, [<sup>18</sup>F]FDG micro-PET-CT of lumpectomy specimens has shown promise for intraoperative margin assessment (IMA). To aid interpretation, we trained a 2D Residual U-Net to delineate invasive carcinoma of no special type in micro-PET-CT lumpectomy images. We collected 53 BCa lamella images from 19 patients with true histopathology-defined tumour segmentations. Group five-fold cross-validation yielded a dice similarity coefficient of 0.71 ± 0.20 for segmentation. Afterwards, an ensemble model was generated to segment tumours and predict margin status. Comparing predicted and true histopathological margin status in a separate set of 31 micro-PET-CT lumpectomy images of 31 patients achieved an F1 score of 84%, closely matching the mean performance of seven physicians who manually interpreted the same images. This model represents an important step towards a decision-support system that enhances micro-PET-CT-based IMA in BCa, facilitating its clinical adoption.</p>\",\"PeriodicalId\":19247,\"journal\":{\"name\":\"NPJ Breast Cancer\",\"volume\":\"11 1\",\"pages\":\"88\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335567/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Breast Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41523-025-00797-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Breast Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41523-025-00797-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

完全切除肿瘤是治疗性乳腺癌(BCa)手术预防复发的关键。最近,[18F]乳房肿瘤切除术标本的FDG显微pet - ct显示出术中边缘评估(IMA)的前景。为了帮助解释,我们训练了二维残留U-Net来描绘微pet - ct乳房肿瘤切除术图像中没有特殊类型的浸润性癌。我们收集了19例具有真正组织病理学定义的肿瘤分割的患者的53张BCa片层图像。组五重交叉验证得到分割的骰子相似系数为0.71±0.20。然后,生成一个集合模型来分割肿瘤并预测边缘状态。比较31名患者的31张显微pet - ct乳房肿瘤切除术图像的预测和真实组织病理学边缘状态,F1得分为84%,与7名手动解释相同图像的医生的平均表现非常接近。该模型代表了决策支持系统的重要一步,该系统可以增强基于微pet - ct的BCa IMA,促进其临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supporting intraoperative margin assessment using deep learning for automatic tumour segmentation in breast lumpectomy micro-PET-CT.

Complete tumour removal is vital in curative breast cancer (BCa) surgery to prevent recurrence. Recently, [18F]FDG micro-PET-CT of lumpectomy specimens has shown promise for intraoperative margin assessment (IMA). To aid interpretation, we trained a 2D Residual U-Net to delineate invasive carcinoma of no special type in micro-PET-CT lumpectomy images. We collected 53 BCa lamella images from 19 patients with true histopathology-defined tumour segmentations. Group five-fold cross-validation yielded a dice similarity coefficient of 0.71 ± 0.20 for segmentation. Afterwards, an ensemble model was generated to segment tumours and predict margin status. Comparing predicted and true histopathological margin status in a separate set of 31 micro-PET-CT lumpectomy images of 31 patients achieved an F1 score of 84%, closely matching the mean performance of seven physicians who manually interpreted the same images. This model represents an important step towards a decision-support system that enhances micro-PET-CT-based IMA in BCa, facilitating its clinical adoption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Breast Cancer
NPJ Breast Cancer Medicine-Pharmacology (medical)
CiteScore
10.10
自引率
1.70%
发文量
122
审稿时长
9 weeks
期刊介绍: npj Breast Cancer publishes original research articles, reviews, brief correspondence, meeting reports, editorial summaries and hypothesis generating observations which could be unexplained or preliminary findings from experiments, novel ideas, or the framing of new questions that need to be solved. Featured topics of the journal include imaging, immunotherapy, molecular classification of disease, mechanism-based therapies largely targeting signal transduction pathways, carcinogenesis including hereditary susceptibility and molecular epidemiology, survivorship issues including long-term toxicities of treatment and secondary neoplasm occurrence, the biophysics of cancer, mechanisms of metastasis and their perturbation, and studies of the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信