Oluwakorede Akele, Freeha Rana, Sudeep Acharya, David LeDoux, Michel Chalhoub
{"title":"靶向脂多糖治疗革兰氏阴性脓毒症:治疗进展和挑战。","authors":"Oluwakorede Akele, Freeha Rana, Sudeep Acharya, David LeDoux, Michel Chalhoub","doi":"10.1080/1061186X.2025.2546487","DOIUrl":null,"url":null,"abstract":"<p><p>Gram-negative bacterial sepsis remains a major global health threat, exacerbated by rising antimicrobial resistance and limited efficacy of current therapies. Central to its pathogenesis is lipopolysaccharide (LPS), a potent endotoxin that triggers overwhelming inflammation and organ dysfunction. This review critically evaluates emerging therapies targeting LPS in sepsis. Key strategies include antibiotics disrupting LPS biosynthesis and transport (e.g. zosurabalpin, darobactin), monoclonal and bispecific antibodies, extracorporeal endotoxin removal devices, and novel agents like LpxC inhibitors and nanotechnology-based platforms. Despite promising preclinical and early clinical data, translation to practice is limited by pharmacokinetic challenges, toxicity, resistance mechanisms, and inadequate patient stratification. Anti-LPS antibodies and polymyxins have shown selective benefits but face setbacks in broader trials. Nanotherapeutics and targeted filtration systems like oXiris<sup>®</sup> and Alteco<sup>®</sup> offer adjunctive potential but require validation through randomised studies. The complexity of LPS biology and sepsis heterogeneity demonstrates the need for precision medicine approaches and biomarker-guided interventions. Addressing scalability, regulatory hurdles, and cost-effectiveness will be critical to integrating LPS-targeted therapies into standard sepsis care. This review outlines a translational roadmap to harness these innovations and improve outcomes in Gram-negative sepsis.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-13"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting lipopolysaccharides in gram-negative sepsis: therapeutic advances and challenges.\",\"authors\":\"Oluwakorede Akele, Freeha Rana, Sudeep Acharya, David LeDoux, Michel Chalhoub\",\"doi\":\"10.1080/1061186X.2025.2546487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gram-negative bacterial sepsis remains a major global health threat, exacerbated by rising antimicrobial resistance and limited efficacy of current therapies. Central to its pathogenesis is lipopolysaccharide (LPS), a potent endotoxin that triggers overwhelming inflammation and organ dysfunction. This review critically evaluates emerging therapies targeting LPS in sepsis. Key strategies include antibiotics disrupting LPS biosynthesis and transport (e.g. zosurabalpin, darobactin), monoclonal and bispecific antibodies, extracorporeal endotoxin removal devices, and novel agents like LpxC inhibitors and nanotechnology-based platforms. Despite promising preclinical and early clinical data, translation to practice is limited by pharmacokinetic challenges, toxicity, resistance mechanisms, and inadequate patient stratification. Anti-LPS antibodies and polymyxins have shown selective benefits but face setbacks in broader trials. Nanotherapeutics and targeted filtration systems like oXiris<sup>®</sup> and Alteco<sup>®</sup> offer adjunctive potential but require validation through randomised studies. The complexity of LPS biology and sepsis heterogeneity demonstrates the need for precision medicine approaches and biomarker-guided interventions. Addressing scalability, regulatory hurdles, and cost-effectiveness will be critical to integrating LPS-targeted therapies into standard sepsis care. This review outlines a translational roadmap to harness these innovations and improve outcomes in Gram-negative sepsis.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2025.2546487\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2546487","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Targeting lipopolysaccharides in gram-negative sepsis: therapeutic advances and challenges.
Gram-negative bacterial sepsis remains a major global health threat, exacerbated by rising antimicrobial resistance and limited efficacy of current therapies. Central to its pathogenesis is lipopolysaccharide (LPS), a potent endotoxin that triggers overwhelming inflammation and organ dysfunction. This review critically evaluates emerging therapies targeting LPS in sepsis. Key strategies include antibiotics disrupting LPS biosynthesis and transport (e.g. zosurabalpin, darobactin), monoclonal and bispecific antibodies, extracorporeal endotoxin removal devices, and novel agents like LpxC inhibitors and nanotechnology-based platforms. Despite promising preclinical and early clinical data, translation to practice is limited by pharmacokinetic challenges, toxicity, resistance mechanisms, and inadequate patient stratification. Anti-LPS antibodies and polymyxins have shown selective benefits but face setbacks in broader trials. Nanotherapeutics and targeted filtration systems like oXiris® and Alteco® offer adjunctive potential but require validation through randomised studies. The complexity of LPS biology and sepsis heterogeneity demonstrates the need for precision medicine approaches and biomarker-guided interventions. Addressing scalability, regulatory hurdles, and cost-effectiveness will be critical to integrating LPS-targeted therapies into standard sepsis care. This review outlines a translational roadmap to harness these innovations and improve outcomes in Gram-negative sepsis.
期刊介绍:
Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs.
Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.