{"title":"根据从计算机研究中获得的细胞色素P450酶的药物基因组学数据,用于临床环境的日本药品标签。","authors":"Yoichi Tanaka, Makiko Shimizu, Yoshiro Saito, Hiroshi Yamazaki","doi":"10.1016/j.dmpk.2025.101496","DOIUrl":null,"url":null,"abstract":"<p><p>Although the United States Food and Drug Administration has disclosed a list of drugs with pharmacogenomic biomarkers for drug labeling, there is limited information regarding pharmacogenomic-associated drugs in Japan. Such associations include genetic variants of uridine diphosphate glucuronosyltransferase 1A1 for irinotecan, nudix hydrolase 15 for thiopurine drugs, and cytochrome P450 (P450) 2C9 for siponimod. The effects of such genetic variants on drug concentrations are similar to those from drug interactions. Because of race and dosage differences, the relevance of pharmacogenomic associations in Asian populations requires confirmation. This white paper proposes that in vitro pharmacogenomic information can be used to predict human pharmacokinetics and to describe in drug labels the changes in blood concentrations by genetic variants. For P450 variants CYP2C9∗3, CYP2C19∗2, CYP2C19∗3, CYP2D6∗10, and CYP3A4∗16, we propose using the enzymatic activity parameters obtained from in vitro functional analysis of the drug-metabolizing enzymes for multiple substrate drugs to predict the effects of these variants on human pharmacokinetics. Consequently, in patients prescribed only a single drug, anything more than a \"moderate effect\" on plasma exposure should be mentioned as a caution in the drug labels; such effects are likely caused by enzyme polymorphisms resulting in similar effects to drug-drug interactions.</p>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"64 ","pages":"101496"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Japanese medicinal drug labeling for use in the clinical setting as informed by pharmacogenomic data on cytochrome P450 enzymes obtained from in silico studies.\",\"authors\":\"Yoichi Tanaka, Makiko Shimizu, Yoshiro Saito, Hiroshi Yamazaki\",\"doi\":\"10.1016/j.dmpk.2025.101496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although the United States Food and Drug Administration has disclosed a list of drugs with pharmacogenomic biomarkers for drug labeling, there is limited information regarding pharmacogenomic-associated drugs in Japan. Such associations include genetic variants of uridine diphosphate glucuronosyltransferase 1A1 for irinotecan, nudix hydrolase 15 for thiopurine drugs, and cytochrome P450 (P450) 2C9 for siponimod. The effects of such genetic variants on drug concentrations are similar to those from drug interactions. Because of race and dosage differences, the relevance of pharmacogenomic associations in Asian populations requires confirmation. This white paper proposes that in vitro pharmacogenomic information can be used to predict human pharmacokinetics and to describe in drug labels the changes in blood concentrations by genetic variants. For P450 variants CYP2C9∗3, CYP2C19∗2, CYP2C19∗3, CYP2D6∗10, and CYP3A4∗16, we propose using the enzymatic activity parameters obtained from in vitro functional analysis of the drug-metabolizing enzymes for multiple substrate drugs to predict the effects of these variants on human pharmacokinetics. Consequently, in patients prescribed only a single drug, anything more than a \\\"moderate effect\\\" on plasma exposure should be mentioned as a caution in the drug labels; such effects are likely caused by enzyme polymorphisms resulting in similar effects to drug-drug interactions.</p>\",\"PeriodicalId\":11298,\"journal\":{\"name\":\"Drug Metabolism and Pharmacokinetics\",\"volume\":\"64 \",\"pages\":\"101496\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Metabolism and Pharmacokinetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dmpk.2025.101496\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.dmpk.2025.101496","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Japanese medicinal drug labeling for use in the clinical setting as informed by pharmacogenomic data on cytochrome P450 enzymes obtained from in silico studies.
Although the United States Food and Drug Administration has disclosed a list of drugs with pharmacogenomic biomarkers for drug labeling, there is limited information regarding pharmacogenomic-associated drugs in Japan. Such associations include genetic variants of uridine diphosphate glucuronosyltransferase 1A1 for irinotecan, nudix hydrolase 15 for thiopurine drugs, and cytochrome P450 (P450) 2C9 for siponimod. The effects of such genetic variants on drug concentrations are similar to those from drug interactions. Because of race and dosage differences, the relevance of pharmacogenomic associations in Asian populations requires confirmation. This white paper proposes that in vitro pharmacogenomic information can be used to predict human pharmacokinetics and to describe in drug labels the changes in blood concentrations by genetic variants. For P450 variants CYP2C9∗3, CYP2C19∗2, CYP2C19∗3, CYP2D6∗10, and CYP3A4∗16, we propose using the enzymatic activity parameters obtained from in vitro functional analysis of the drug-metabolizing enzymes for multiple substrate drugs to predict the effects of these variants on human pharmacokinetics. Consequently, in patients prescribed only a single drug, anything more than a "moderate effect" on plasma exposure should be mentioned as a caution in the drug labels; such effects are likely caused by enzyme polymorphisms resulting in similar effects to drug-drug interactions.
期刊介绍:
DMPK publishes original and innovative scientific papers that address topics broadly related to xenobiotics. The term xenobiotic includes medicinal as well as environmental and agricultural chemicals and macromolecules. The journal is organized into sections as follows:
- Drug metabolism / Biotransformation
- Pharmacokinetics and pharmacodynamics
- Toxicokinetics and toxicodynamics
- Drug-drug interaction / Drug-food interaction
- Mechanism of drug absorption and disposition (including transporter)
- Drug delivery system
- Clinical pharmacy and pharmacology
- Analytical method
- Factors affecting drug metabolism and transport
- Expression of genes for drug-metabolizing enzymes and transporters
- Pharmacogenetics and pharmacogenomics
- Pharmacoepidemiology.