E7肽和氧化镁功能化的同轴纤维膜增强骨髓间充质干细胞的募集,促进骨再生。

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shengyu Long, Wentong Wang, Yongcheng Chen, Zhihua Wang, Hao Duan, Ping Yuan, Yunrong Xu, Denghui Li, Wan Zhang, Weizhou Wang, Fei He
{"title":"E7肽和氧化镁功能化的同轴纤维膜增强骨髓间充质干细胞的募集,促进骨再生。","authors":"Shengyu Long, Wentong Wang, Yongcheng Chen, Zhihua Wang, Hao Duan, Ping Yuan, Yunrong Xu, Denghui Li, Wan Zhang, Weizhou Wang, Fei He","doi":"10.1186/s12896-025-01017-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The repair of bone defects remains a significant clinical challenge. Although magnesium (Mg)-based biomimetic scaffolds are widely utilized for bone defect repair, the release of Mg²⁺ ions often leads to an alkaline microenvironment, thereby adversely affecting bone regeneration. Regenerative medicine strategies that leverage the recruitment of endogenous bone marrow mesenchymal stem cells (BMSCs) offer a novel approach to treating bone defects.</p><p><strong>Methods: </strong>In this study, we employed poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) as shell materials and nanomagnesium oxide (nMgO) combined with gelatin (G) as core materials to fabricate coaxial fibre membranes with a \"core‒shell\" structure via coaxial electrospinning technology. Additionally, we grafted the BMSC-affinitive peptide E7 (EPLQLKM) onto the fibres to achieve specific recruitment of endogenous BMSCs.</p><p><strong>Results: </strong>Morphological and structural analyses confirmed the successful formation of the \"core‒shell\" structure of the fibre membranes. Grafting E7 peptides enhanced the hydrophilicity and mechanical properties of the fibre membranes and maintained pH stability in vitro. In vitro experiments demonstrated that the functionalized fibre membranes significantly promoted BMSC proliferation, migration, and osteogenic differentiation. When implanted into a rat cranial defect model, we observed the formation of new bone tissue and the repair of the bone defect.</p><p><strong>Conclusions: </strong>E7 peptide-functionalized coaxial fibre membranes effectively facilitated bone defect repair by promoting the recruitment and osteogenic differentiation of BMSCs, demonstrating substantial potential for tissue engineering applications.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"25 1","pages":"80"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335062/pdf/","citationCount":"0","resultStr":"{\"title\":\"E7 peptide and magnesium oxide-functionalized coaxial fibre membranes enhance the recruitment of bone marrow mesenchymal stem cells and promote bone regeneration.\",\"authors\":\"Shengyu Long, Wentong Wang, Yongcheng Chen, Zhihua Wang, Hao Duan, Ping Yuan, Yunrong Xu, Denghui Li, Wan Zhang, Weizhou Wang, Fei He\",\"doi\":\"10.1186/s12896-025-01017-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The repair of bone defects remains a significant clinical challenge. Although magnesium (Mg)-based biomimetic scaffolds are widely utilized for bone defect repair, the release of Mg²⁺ ions often leads to an alkaline microenvironment, thereby adversely affecting bone regeneration. Regenerative medicine strategies that leverage the recruitment of endogenous bone marrow mesenchymal stem cells (BMSCs) offer a novel approach to treating bone defects.</p><p><strong>Methods: </strong>In this study, we employed poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) as shell materials and nanomagnesium oxide (nMgO) combined with gelatin (G) as core materials to fabricate coaxial fibre membranes with a \\\"core‒shell\\\" structure via coaxial electrospinning technology. Additionally, we grafted the BMSC-affinitive peptide E7 (EPLQLKM) onto the fibres to achieve specific recruitment of endogenous BMSCs.</p><p><strong>Results: </strong>Morphological and structural analyses confirmed the successful formation of the \\\"core‒shell\\\" structure of the fibre membranes. Grafting E7 peptides enhanced the hydrophilicity and mechanical properties of the fibre membranes and maintained pH stability in vitro. In vitro experiments demonstrated that the functionalized fibre membranes significantly promoted BMSC proliferation, migration, and osteogenic differentiation. When implanted into a rat cranial defect model, we observed the formation of new bone tissue and the repair of the bone defect.</p><p><strong>Conclusions: </strong>E7 peptide-functionalized coaxial fibre membranes effectively facilitated bone defect repair by promoting the recruitment and osteogenic differentiation of BMSCs, demonstrating substantial potential for tissue engineering applications.</p>\",\"PeriodicalId\":8905,\"journal\":{\"name\":\"BMC Biotechnology\",\"volume\":\"25 1\",\"pages\":\"80\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335062/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12896-025-01017-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-025-01017-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:骨缺损的修复仍然是一个重大的临床挑战。尽管镁(Mg)基仿生支架被广泛用于骨缺损修复,但Mg +离子的释放往往导致碱性微环境,从而对骨再生产生不利影响。利用内源性骨髓间充质干细胞(BMSCs)募集的再生医学策略为治疗骨缺损提供了一种新的方法。方法:本研究以聚l -乳酸(PLLA)和聚乙二醇(PEG)为壳层材料,纳米氧化镁(nMgO)与明胶(G)复合为芯层材料,采用同轴静电纺丝技术制备具有“核-壳”结构的同轴纤维膜。此外,我们将骨髓间充质干细胞亲和肽E7 (EPLQLKM)移植到纤维上,以实现内源性骨髓间充质干细胞的特异性募集。结果:形态学和结构分析证实了纤维膜“核-壳”结构的成功形成。接枝E7肽增强了纤维膜的亲水性和力学性能,并保持了pH的体外稳定性。体外实验表明,功能化纤维膜能显著促进骨髓间充质干细胞增殖、迁移和成骨分化。植入大鼠颅骨缺损模型后,观察到新骨组织的形成和骨缺损的修复。结论:E7肽功能化的同轴纤维膜通过促进骨髓间充质干细胞的募集和成骨分化,有效促进骨缺损修复,具有很大的组织工程应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E7 peptide and magnesium oxide-functionalized coaxial fibre membranes enhance the recruitment of bone marrow mesenchymal stem cells and promote bone regeneration.

Background: The repair of bone defects remains a significant clinical challenge. Although magnesium (Mg)-based biomimetic scaffolds are widely utilized for bone defect repair, the release of Mg²⁺ ions often leads to an alkaline microenvironment, thereby adversely affecting bone regeneration. Regenerative medicine strategies that leverage the recruitment of endogenous bone marrow mesenchymal stem cells (BMSCs) offer a novel approach to treating bone defects.

Methods: In this study, we employed poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) as shell materials and nanomagnesium oxide (nMgO) combined with gelatin (G) as core materials to fabricate coaxial fibre membranes with a "core‒shell" structure via coaxial electrospinning technology. Additionally, we grafted the BMSC-affinitive peptide E7 (EPLQLKM) onto the fibres to achieve specific recruitment of endogenous BMSCs.

Results: Morphological and structural analyses confirmed the successful formation of the "core‒shell" structure of the fibre membranes. Grafting E7 peptides enhanced the hydrophilicity and mechanical properties of the fibre membranes and maintained pH stability in vitro. In vitro experiments demonstrated that the functionalized fibre membranes significantly promoted BMSC proliferation, migration, and osteogenic differentiation. When implanted into a rat cranial defect model, we observed the formation of new bone tissue and the repair of the bone defect.

Conclusions: E7 peptide-functionalized coaxial fibre membranes effectively facilitated bone defect repair by promoting the recruitment and osteogenic differentiation of BMSCs, demonstrating substantial potential for tissue engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Biotechnology
BMC Biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.60
自引率
0.00%
发文量
34
审稿时长
2 months
期刊介绍: BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信