Chay A Davies-Smith, Julian Herbert, Ciarán Martin, Darbaz Khasraw, David Warren-Walker, David Bryant, Joe Gallagher, Gordon Allison, Julian M Steer, Richard Marsh, Ahmed Alsawadi, Rakesh Bhatia
{"title":"通过水热预处理-蒸汽爆炸和热解提高钢铁工业生物炭的质量。","authors":"Chay A Davies-Smith, Julian Herbert, Ciarán Martin, Darbaz Khasraw, David Warren-Walker, David Bryant, Joe Gallagher, Gordon Allison, Julian M Steer, Richard Marsh, Ahmed Alsawadi, Rakesh Bhatia","doi":"10.1016/j.biortech.2025.133009","DOIUrl":null,"url":null,"abstract":"<p><p>Biochar has potential applications in steelmaking processes, but faces technical challenges such as low material density, high alkali content, and high reactivity compared to coal. This study explores converting the solid residue, following hydrothermal pretreatment-steam explosion (HTP-SE) of Miscanthus and other biomass feedstocks, into biochar to facilitate the replacement of coal in blast furnace and electric arc furnace operations. It is the first to demonstrate the enhanced combustion characteristics of pretreated fibre and the compatibility of the biochar for use in steelmaking. Biomass from birch, miscanthus, wheat straw, both untreated and pretreated, was evaluated. HTP-SE was conducted at 192 °C and 1.3 MPa, conditions aligned with hemicellulose extraction for application in biobased products. Biochars were produced at temperatures ranging from 300 °C to 550 °C. HTP-SE increased the carbon, hydrogen, and energy content by approximately 10%, 8%, and up to 5 MJ/kg, respectively, while reducing ash quantity by up to 45%. In addition, it reduced the alkali and phosphorus content from the solid fraction into aqueous phase. Gas analysis indicated that HTP-SE enhanced the energy content of pyrolysis syngas. Thermogravimetric studies revealed that pretreated biochars exhibited significantly lower reactivity with carbon dioxide compared to untreated counterparts, approaching the reactivity of coal. This was attributed to increased aromaticity, C=C bonding, cross-linkages enriching lignin and by the removal of hemicellulose through HTP-SE. Overall, the upgraded biochar addresses key limitations of conventional biochar and shows strong potential as a substitute to replace injection coal entirely in both blast and electric arc furnaces.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133009"},"PeriodicalIF":9.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing biochar quality for the steel industry via Hydrothermal Pretreatment-Steam Explosion and pyrolysis.\",\"authors\":\"Chay A Davies-Smith, Julian Herbert, Ciarán Martin, Darbaz Khasraw, David Warren-Walker, David Bryant, Joe Gallagher, Gordon Allison, Julian M Steer, Richard Marsh, Ahmed Alsawadi, Rakesh Bhatia\",\"doi\":\"10.1016/j.biortech.2025.133009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biochar has potential applications in steelmaking processes, but faces technical challenges such as low material density, high alkali content, and high reactivity compared to coal. This study explores converting the solid residue, following hydrothermal pretreatment-steam explosion (HTP-SE) of Miscanthus and other biomass feedstocks, into biochar to facilitate the replacement of coal in blast furnace and electric arc furnace operations. It is the first to demonstrate the enhanced combustion characteristics of pretreated fibre and the compatibility of the biochar for use in steelmaking. Biomass from birch, miscanthus, wheat straw, both untreated and pretreated, was evaluated. HTP-SE was conducted at 192 °C and 1.3 MPa, conditions aligned with hemicellulose extraction for application in biobased products. Biochars were produced at temperatures ranging from 300 °C to 550 °C. HTP-SE increased the carbon, hydrogen, and energy content by approximately 10%, 8%, and up to 5 MJ/kg, respectively, while reducing ash quantity by up to 45%. In addition, it reduced the alkali and phosphorus content from the solid fraction into aqueous phase. Gas analysis indicated that HTP-SE enhanced the energy content of pyrolysis syngas. Thermogravimetric studies revealed that pretreated biochars exhibited significantly lower reactivity with carbon dioxide compared to untreated counterparts, approaching the reactivity of coal. This was attributed to increased aromaticity, C=C bonding, cross-linkages enriching lignin and by the removal of hemicellulose through HTP-SE. Overall, the upgraded biochar addresses key limitations of conventional biochar and shows strong potential as a substitute to replace injection coal entirely in both blast and electric arc furnaces.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"133009\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2025.133009\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133009","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Enhancing biochar quality for the steel industry via Hydrothermal Pretreatment-Steam Explosion and pyrolysis.
Biochar has potential applications in steelmaking processes, but faces technical challenges such as low material density, high alkali content, and high reactivity compared to coal. This study explores converting the solid residue, following hydrothermal pretreatment-steam explosion (HTP-SE) of Miscanthus and other biomass feedstocks, into biochar to facilitate the replacement of coal in blast furnace and electric arc furnace operations. It is the first to demonstrate the enhanced combustion characteristics of pretreated fibre and the compatibility of the biochar for use in steelmaking. Biomass from birch, miscanthus, wheat straw, both untreated and pretreated, was evaluated. HTP-SE was conducted at 192 °C and 1.3 MPa, conditions aligned with hemicellulose extraction for application in biobased products. Biochars were produced at temperatures ranging from 300 °C to 550 °C. HTP-SE increased the carbon, hydrogen, and energy content by approximately 10%, 8%, and up to 5 MJ/kg, respectively, while reducing ash quantity by up to 45%. In addition, it reduced the alkali and phosphorus content from the solid fraction into aqueous phase. Gas analysis indicated that HTP-SE enhanced the energy content of pyrolysis syngas. Thermogravimetric studies revealed that pretreated biochars exhibited significantly lower reactivity with carbon dioxide compared to untreated counterparts, approaching the reactivity of coal. This was attributed to increased aromaticity, C=C bonding, cross-linkages enriching lignin and by the removal of hemicellulose through HTP-SE. Overall, the upgraded biochar addresses key limitations of conventional biochar and shows strong potential as a substitute to replace injection coal entirely in both blast and electric arc furnaces.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.