{"title":"寻找一种高效的铝离子混合电容器正极材料:高熵普鲁士蓝模拟物的研究。","authors":"Arijit Dey, Sribas Mondal, Pallav Mondal, Pappu Naskar, Sourav Laha, Anjan Banerjee","doi":"10.1002/cplu.202500375","DOIUrl":null,"url":null,"abstract":"<p>An aqueous Al-ion hybrid capacitor (AIHC) employing a high-entropy Prussian blue analog (HE-PBA) as a positive electrode material is reported. Combined characterization using energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis confirms the chemical composition of HE-PBA as Na<sub>2</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Cu<sub>0.2</sub>Zn<sub>0.2</sub>[Fe(CN)<sub>6</sub>]<sub>0.96</sub>.0.5H<sub>2</sub>O. The HE-PBA crystalizes in monoclinic phase (space group <i>P2</i><sub>1</sub><i>/n</i>) with a bandgap of 0.8 eV. XPS data reveals that only Ni and Fe exhibit both bivalent and trivalent states, while other transition metals remain in the bivalent state. Electrochemical analysis indicates a diffusion-controlled mechanism (b ≈ 0.6) associated with HE-PBA with a diffusion coefficient of 9.2 × 10<sup>−14 </sup>cm<sup>2</sup> s<sup>−1</sup>. An AIHC device is assembled using HE-PBA positive and polypyrrole negative electrodes in a SiO<sub>2</sub>-Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> hydrogel electrolyte, where the electrodes operate via Faradaic and pseudo Faradaic processes, respectively. The device exhibits an energy density of 20 Wh kg<sup>−1</sup> (@ 78 W kg<sup>−1</sup>), a power density of 378 W kg<sup>−1</sup> (@ 8 Wh kg<sup>−1</sup>), and outstanding cycling stability (90% capacity retention after 500 cycles at 300 mA g<sup>−1</sup>). It also shows an ultrafast response time of 0.66 s, highlighting excellent power capability. Compared to the only five reported aqueous AIHCs, this study demonstrates promising electrochemical performance despite the challenges of trivalent Al³<sup>+</sup> insertion/deinsertion in aqueous media.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Quest of an Efficient Positive Electrode Material for Aqueous Al-Ion Hybrid Capacitor: Investigation of a High Entropy Prussian Blue Analog\",\"authors\":\"Arijit Dey, Sribas Mondal, Pallav Mondal, Pappu Naskar, Sourav Laha, Anjan Banerjee\",\"doi\":\"10.1002/cplu.202500375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An aqueous Al-ion hybrid capacitor (AIHC) employing a high-entropy Prussian blue analog (HE-PBA) as a positive electrode material is reported. Combined characterization using energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis confirms the chemical composition of HE-PBA as Na<sub>2</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Cu<sub>0.2</sub>Zn<sub>0.2</sub>[Fe(CN)<sub>6</sub>]<sub>0.96</sub>.0.5H<sub>2</sub>O. The HE-PBA crystalizes in monoclinic phase (space group <i>P2</i><sub>1</sub><i>/n</i>) with a bandgap of 0.8 eV. XPS data reveals that only Ni and Fe exhibit both bivalent and trivalent states, while other transition metals remain in the bivalent state. Electrochemical analysis indicates a diffusion-controlled mechanism (b ≈ 0.6) associated with HE-PBA with a diffusion coefficient of 9.2 × 10<sup>−14 </sup>cm<sup>2</sup> s<sup>−1</sup>. An AIHC device is assembled using HE-PBA positive and polypyrrole negative electrodes in a SiO<sub>2</sub>-Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> hydrogel electrolyte, where the electrodes operate via Faradaic and pseudo Faradaic processes, respectively. The device exhibits an energy density of 20 Wh kg<sup>−1</sup> (@ 78 W kg<sup>−1</sup>), a power density of 378 W kg<sup>−1</sup> (@ 8 Wh kg<sup>−1</sup>), and outstanding cycling stability (90% capacity retention after 500 cycles at 300 mA g<sup>−1</sup>). It also shows an ultrafast response time of 0.66 s, highlighting excellent power capability. Compared to the only five reported aqueous AIHCs, this study demonstrates promising electrochemical performance despite the challenges of trivalent Al³<sup>+</sup> insertion/deinsertion in aqueous media.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\"90 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cplu.202500375\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cplu.202500375","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
报道了一种采用高熵普鲁士蓝类似物(HE-PBA)作为正极材料的铝离子混合电容器(AIHC)。结合能量色散x射线分析、傅里叶变换红外光谱和热重分析,确定了HE-PBA的化学成分为Na2Mn0.2Co0.2Ni0.2Cu0.2Zn0.2[Fe(CN)6]0.96.0.5H2O。HE-PBA结晶为单斜相(空间群P21/n),带隙为0.8 eV。XPS数据显示,只有Ni和Fe同时呈现二价和三价态,而其他过渡金属则保持二价态。电化学分析表明HE-PBA具有扩散控制机制(b≈0.6),扩散系数为9.2 × 10-14 cm2 s-1。采用HE-PBA正极和聚吡啶负极在SiO2-Al2(SO4)3水凝胶电解质中组装AIHC装置,其中电极分别通过法拉第和伪法拉第过程工作。该器件的能量密度为20 Wh kg-1 (@ 78 W kg-1),功率密度为378 W kg-1 (@ 8 Wh kg-1),并且具有出色的循环稳定性(在300 mA g-1下循环500次后容量保持90%)。它还显示了0.66 s的超快响应时间,突出了出色的功率能力。与仅有的五种已报道的水性aihc相比,尽管在水介质中存在三价Al³+插入/脱插入的挑战,但该研究显示出了良好的电化学性能。
In Quest of an Efficient Positive Electrode Material for Aqueous Al-Ion Hybrid Capacitor: Investigation of a High Entropy Prussian Blue Analog
An aqueous Al-ion hybrid capacitor (AIHC) employing a high-entropy Prussian blue analog (HE-PBA) as a positive electrode material is reported. Combined characterization using energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis confirms the chemical composition of HE-PBA as Na2Mn0.2Co0.2Ni0.2Cu0.2Zn0.2[Fe(CN)6]0.96.0.5H2O. The HE-PBA crystalizes in monoclinic phase (space group P21/n) with a bandgap of 0.8 eV. XPS data reveals that only Ni and Fe exhibit both bivalent and trivalent states, while other transition metals remain in the bivalent state. Electrochemical analysis indicates a diffusion-controlled mechanism (b ≈ 0.6) associated with HE-PBA with a diffusion coefficient of 9.2 × 10−14 cm2 s−1. An AIHC device is assembled using HE-PBA positive and polypyrrole negative electrodes in a SiO2-Al2(SO4)3 hydrogel electrolyte, where the electrodes operate via Faradaic and pseudo Faradaic processes, respectively. The device exhibits an energy density of 20 Wh kg−1 (@ 78 W kg−1), a power density of 378 W kg−1 (@ 8 Wh kg−1), and outstanding cycling stability (90% capacity retention after 500 cycles at 300 mA g−1). It also shows an ultrafast response time of 0.66 s, highlighting excellent power capability. Compared to the only five reported aqueous AIHCs, this study demonstrates promising electrochemical performance despite the challenges of trivalent Al³+ insertion/deinsertion in aqueous media.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.