纤维复合材料的导电性

IF 2.8
Luke Hunter, Sergio Bertazzo
{"title":"纤维复合材料的导电性","authors":"Luke Hunter,&nbsp;Sergio Bertazzo","doi":"10.1002/apxr.202500040","DOIUrl":null,"url":null,"abstract":"<p>Carbon fiber and other fibrous composites are widely used in structural components for wind turbines and aircraft. These applications not only require high strength and low weight but also tailored electrical properties. Designing new composites that can resist lightning strikes or be used in bioelectronics relies on accurately predicting their electrical conductivities. Yet most models of conductivity in these composites lack a geometrically meaningful basis, particularly if applied far from the percolation threshold which often occurs in the earliest 1% of the composite design space. An electrical model that is grounded in real fiber geometries and arrangements is derived. New equations are obtained, combining materials science and network physics, that accurately predict individual fiber overlap, neighbor distributions, and percolation thresholds in systems of overlapping shapes. Combining these equations with the new electrical model of a “foamy cluster”, yielded excellent predictions of conductivity in many different types of fibrous composites.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500040","citationCount":"0","resultStr":"{\"title\":\"Electrical Conductivity in Fibrous Composites\",\"authors\":\"Luke Hunter,&nbsp;Sergio Bertazzo\",\"doi\":\"10.1002/apxr.202500040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon fiber and other fibrous composites are widely used in structural components for wind turbines and aircraft. These applications not only require high strength and low weight but also tailored electrical properties. Designing new composites that can resist lightning strikes or be used in bioelectronics relies on accurately predicting their electrical conductivities. Yet most models of conductivity in these composites lack a geometrically meaningful basis, particularly if applied far from the percolation threshold which often occurs in the earliest 1% of the composite design space. An electrical model that is grounded in real fiber geometries and arrangements is derived. New equations are obtained, combining materials science and network physics, that accurately predict individual fiber overlap, neighbor distributions, and percolation thresholds in systems of overlapping shapes. Combining these equations with the new electrical model of a “foamy cluster”, yielded excellent predictions of conductivity in many different types of fibrous composites.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"4 8\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500040\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

碳纤维和其他纤维复合材料广泛用于风力涡轮机和飞机的结构部件。这些应用不仅需要高强度和低重量,而且需要定制的电气性能。设计能够抵抗雷击或用于生物电子学的新型复合材料依赖于准确预测其电导率。然而,这些复合材料的大多数电导率模型缺乏几何上有意义的基础,特别是在远离渗透阈值的情况下,渗透阈值通常发生在复合材料设计空间的前1%。推导了基于真实纤维几何形状和排列的电模型。结合材料科学和网络物理,获得了新的方程,可以准确预测重叠形状系统中的单个纤维重叠,邻居分布和渗透阈值。将这些方程与“泡沫簇”的新电模型相结合,得出了许多不同类型纤维复合材料的导电性的极好预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrical Conductivity in Fibrous Composites

Electrical Conductivity in Fibrous Composites

Electrical Conductivity in Fibrous Composites

Electrical Conductivity in Fibrous Composites

Carbon fiber and other fibrous composites are widely used in structural components for wind turbines and aircraft. These applications not only require high strength and low weight but also tailored electrical properties. Designing new composites that can resist lightning strikes or be used in bioelectronics relies on accurately predicting their electrical conductivities. Yet most models of conductivity in these composites lack a geometrically meaningful basis, particularly if applied far from the percolation threshold which often occurs in the earliest 1% of the composite design space. An electrical model that is grounded in real fiber geometries and arrangements is derived. New equations are obtained, combining materials science and network physics, that accurately predict individual fiber overlap, neighbor distributions, and percolation thresholds in systems of overlapping shapes. Combining these equations with the new electrical model of a “foamy cluster”, yielded excellent predictions of conductivity in many different types of fibrous composites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信