Yoon Wha Oh, Seung Won Kang, Sangbae Park, Sang-Wook Park, Hee-Gyeong Yi
{"title":"胶原/羟基磷灰石水凝胶促进细胞间相互作用和成骨分化","authors":"Yoon Wha Oh, Seung Won Kang, Sangbae Park, Sang-Wook Park, Hee-Gyeong Yi","doi":"10.1002/jbm.b.35632","DOIUrl":null,"url":null,"abstract":"<p>Bone defects resulting from trauma, disease, or congenital abnormalities present formidable clinical challenges, necessitating advanced regenerative strategies. In this study, a novel bone tissue engineering approach utilizing the osteoinductive properties of collagen/hydroxyapatite (HA) hydrogels and the structural support provided by 3D-printed polylactic acid (PLA) scaffolds was investigated. Specifically, MG63 osteoblast-like cells were encapsulated within collagen/HA hydrogels formulated at an optimized 5:5 ratio and subsequently loaded into PLA lattices. Cell viability, osteogenic differentiation, and mineralization, assessed through live/dead assays, alkaline phosphatase (ALP) activity, osteogenic gene expression analysis, alizarin red S (ARS) staining, field-emission scanning electron microscopy (FE-SEM), and micro-computed tomography (micro-CT) analyses were conducted in vitro. The results demonstrated that the 5:5 collagen/HA hydrogel supported significantly enhanced cell proliferation compared to other tested ratios and the collagen control group. Under bone morphogenetic protein 2 (BMP-2)-induced osteogenic conditions, the composite hydrogel exhibited markedly higher ALP activity and upregulated key osteogenic markers, including ALP and Osterix, indicating robust early differentiation. ARS staining and FE-SEM imaging revealed accelerated and more uniform mineral deposition in the collagen/HA group. These findings were corroborated by 3D micro-CT analysis, which showed near-complete mineralization of the scaffold interior by Day 30. These findings suggest that integrating HA into collagen hydrogels improves the biological environment for osteoblast proliferation and differentiation while promoting nucleation and mineralized extracellular matrix growth. The innovative strategy of encapsulating cells within the hydrogel before scaffold loading maximizes direct cell-material interactions, thereby facilitating more efficient osteogenic signaling compared to traditional composite scaffold fabrication methods. This composite scaffold design demonstrates strong potential for accelerating bone regeneration and improving clinical outcomes in bone defect repair.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35632","citationCount":"0","resultStr":"{\"title\":\"Collagen/Hydroxyapatite Hydrogels Promote Intercellular Interactions and Osteogenic Differentiation\",\"authors\":\"Yoon Wha Oh, Seung Won Kang, Sangbae Park, Sang-Wook Park, Hee-Gyeong Yi\",\"doi\":\"10.1002/jbm.b.35632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bone defects resulting from trauma, disease, or congenital abnormalities present formidable clinical challenges, necessitating advanced regenerative strategies. In this study, a novel bone tissue engineering approach utilizing the osteoinductive properties of collagen/hydroxyapatite (HA) hydrogels and the structural support provided by 3D-printed polylactic acid (PLA) scaffolds was investigated. Specifically, MG63 osteoblast-like cells were encapsulated within collagen/HA hydrogels formulated at an optimized 5:5 ratio and subsequently loaded into PLA lattices. Cell viability, osteogenic differentiation, and mineralization, assessed through live/dead assays, alkaline phosphatase (ALP) activity, osteogenic gene expression analysis, alizarin red S (ARS) staining, field-emission scanning electron microscopy (FE-SEM), and micro-computed tomography (micro-CT) analyses were conducted in vitro. The results demonstrated that the 5:5 collagen/HA hydrogel supported significantly enhanced cell proliferation compared to other tested ratios and the collagen control group. Under bone morphogenetic protein 2 (BMP-2)-induced osteogenic conditions, the composite hydrogel exhibited markedly higher ALP activity and upregulated key osteogenic markers, including ALP and Osterix, indicating robust early differentiation. ARS staining and FE-SEM imaging revealed accelerated and more uniform mineral deposition in the collagen/HA group. These findings were corroborated by 3D micro-CT analysis, which showed near-complete mineralization of the scaffold interior by Day 30. These findings suggest that integrating HA into collagen hydrogels improves the biological environment for osteoblast proliferation and differentiation while promoting nucleation and mineralized extracellular matrix growth. The innovative strategy of encapsulating cells within the hydrogel before scaffold loading maximizes direct cell-material interactions, thereby facilitating more efficient osteogenic signaling compared to traditional composite scaffold fabrication methods. This composite scaffold design demonstrates strong potential for accelerating bone regeneration and improving clinical outcomes in bone defect repair.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":\"113 8\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35632\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35632\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35632","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Collagen/Hydroxyapatite Hydrogels Promote Intercellular Interactions and Osteogenic Differentiation
Bone defects resulting from trauma, disease, or congenital abnormalities present formidable clinical challenges, necessitating advanced regenerative strategies. In this study, a novel bone tissue engineering approach utilizing the osteoinductive properties of collagen/hydroxyapatite (HA) hydrogels and the structural support provided by 3D-printed polylactic acid (PLA) scaffolds was investigated. Specifically, MG63 osteoblast-like cells were encapsulated within collagen/HA hydrogels formulated at an optimized 5:5 ratio and subsequently loaded into PLA lattices. Cell viability, osteogenic differentiation, and mineralization, assessed through live/dead assays, alkaline phosphatase (ALP) activity, osteogenic gene expression analysis, alizarin red S (ARS) staining, field-emission scanning electron microscopy (FE-SEM), and micro-computed tomography (micro-CT) analyses were conducted in vitro. The results demonstrated that the 5:5 collagen/HA hydrogel supported significantly enhanced cell proliferation compared to other tested ratios and the collagen control group. Under bone morphogenetic protein 2 (BMP-2)-induced osteogenic conditions, the composite hydrogel exhibited markedly higher ALP activity and upregulated key osteogenic markers, including ALP and Osterix, indicating robust early differentiation. ARS staining and FE-SEM imaging revealed accelerated and more uniform mineral deposition in the collagen/HA group. These findings were corroborated by 3D micro-CT analysis, which showed near-complete mineralization of the scaffold interior by Day 30. These findings suggest that integrating HA into collagen hydrogels improves the biological environment for osteoblast proliferation and differentiation while promoting nucleation and mineralized extracellular matrix growth. The innovative strategy of encapsulating cells within the hydrogel before scaffold loading maximizes direct cell-material interactions, thereby facilitating more efficient osteogenic signaling compared to traditional composite scaffold fabrication methods. This composite scaffold design demonstrates strong potential for accelerating bone regeneration and improving clinical outcomes in bone defect repair.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.