富氧空位s型异质结BiOBr/h-MoO3光催化降解四环素的研究

IF 3.7 2区 化学 Q2 CHEMISTRY, APPLIED
Yi Ren, Jiaxuan Yang, Hongxia Li, Xiaohui Niu, Xiaoyu Liu, Li Chen, Haiyan Fan, Kunjie Wang
{"title":"富氧空位s型异质结BiOBr/h-MoO3光催化降解四环素的研究","authors":"Yi Ren,&nbsp;Jiaxuan Yang,&nbsp;Hongxia Li,&nbsp;Xiaohui Niu,&nbsp;Xiaoyu Liu,&nbsp;Li Chen,&nbsp;Haiyan Fan,&nbsp;Kunjie Wang","doi":"10.1002/aoc.70356","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A BiOBr/h-MoO<sub>3</sub> heterostructure photocatalyst with oxygen vacancy (OV) modulation was synthesized via solvothermal in situ precipitation, exhibiting enhanced visible-light-driven tetracycline (TC) degradation performance. The composite demonstrated 1.5- and 4-fold higher TC degradation rates compared to pristine BiOBr and h-MoO<sub>3</sub>, respectively. Structural characterization via XRD, XPS, and FTIR confirmed the successful synthesis of the composite with controlled OV concentration and interfacial bonding characteristics. Photoluminescence (PL) and electron spin resonance (ESR) analyses revealed that the BiOBr/h-MoO<sub>3</sub> heterojunction achieved optimal reactive oxygen species (ROS) production and minimized electron–hole recombination. Under optimized conditions (catalyst dosage: 10 mg L<sup>−1</sup>, TC concentration: 10 mg L<sup>−1</sup>, pH 10), the system attained 84% TC degradation within 60 min while maintaining 80% efficiency after five operational cycles. Mechanistic studies identified hydroxyl radicals (<span></span>OH) and photogenerated holes (h<sup>+</sup>) as dominant active species, with OVs critically enhancing interfacial charge transfer efficiency. This work provides a viable strategy for constructing OV-engineered heterojunction photocatalysts for antibiotic wastewater treatment.</p>\n </div>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"39 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Photocatalytic Degradation of Tetracycline by S-Type Heterojunction BiOBr/h-MoO3 With Oxygen-Rich Vacancies Under Visible Light\",\"authors\":\"Yi Ren,&nbsp;Jiaxuan Yang,&nbsp;Hongxia Li,&nbsp;Xiaohui Niu,&nbsp;Xiaoyu Liu,&nbsp;Li Chen,&nbsp;Haiyan Fan,&nbsp;Kunjie Wang\",\"doi\":\"10.1002/aoc.70356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A BiOBr/h-MoO<sub>3</sub> heterostructure photocatalyst with oxygen vacancy (OV) modulation was synthesized via solvothermal in situ precipitation, exhibiting enhanced visible-light-driven tetracycline (TC) degradation performance. The composite demonstrated 1.5- and 4-fold higher TC degradation rates compared to pristine BiOBr and h-MoO<sub>3</sub>, respectively. Structural characterization via XRD, XPS, and FTIR confirmed the successful synthesis of the composite with controlled OV concentration and interfacial bonding characteristics. Photoluminescence (PL) and electron spin resonance (ESR) analyses revealed that the BiOBr/h-MoO<sub>3</sub> heterojunction achieved optimal reactive oxygen species (ROS) production and minimized electron–hole recombination. Under optimized conditions (catalyst dosage: 10 mg L<sup>−1</sup>, TC concentration: 10 mg L<sup>−1</sup>, pH 10), the system attained 84% TC degradation within 60 min while maintaining 80% efficiency after five operational cycles. Mechanistic studies identified hydroxyl radicals (<span></span>OH) and photogenerated holes (h<sup>+</sup>) as dominant active species, with OVs critically enhancing interfacial charge transfer efficiency. This work provides a viable strategy for constructing OV-engineered heterojunction photocatalysts for antibiotic wastewater treatment.</p>\\n </div>\",\"PeriodicalId\":8344,\"journal\":{\"name\":\"Applied Organometallic Chemistry\",\"volume\":\"39 9\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aoc.70356\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.70356","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

采用溶剂热原位沉淀法合成了一种氧空位(OV)调制的BiOBr/h-MoO3异质结构光催化剂,该催化剂具有增强的可见光驱动四环素(TC)降解性能。与原始BiOBr和h-MoO3相比,复合材料的TC降解率分别提高了1.5倍和4倍。通过XRD、XPS和FTIR对该复合材料进行了结构表征,证实了该复合材料的成功合成,具有可控的OV浓度和界面键合特性。光致发光(PL)和电子自旋共振(ESR)分析表明,BiOBr/h-MoO3异质结具有最佳的活性氧(ROS)生成和最小的电子-空穴复合。在最佳条件下(催化剂用量为10 mg L−1,TC浓度为10 mg L−1,pH为10),系统在60 min内达到84%的TC降解率,经过5次循环后仍保持80%的效率。机理研究发现羟基自由基(OH)和光生空穴(h+)是主要的活性物质,OVs可显著提高界面电荷转移效率。本研究为构建用于抗生素废水处理的ov工程异质结光催化剂提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Photocatalytic Degradation of Tetracycline by S-Type Heterojunction BiOBr/h-MoO3 With Oxygen-Rich Vacancies Under Visible Light

A BiOBr/h-MoO3 heterostructure photocatalyst with oxygen vacancy (OV) modulation was synthesized via solvothermal in situ precipitation, exhibiting enhanced visible-light-driven tetracycline (TC) degradation performance. The composite demonstrated 1.5- and 4-fold higher TC degradation rates compared to pristine BiOBr and h-MoO3, respectively. Structural characterization via XRD, XPS, and FTIR confirmed the successful synthesis of the composite with controlled OV concentration and interfacial bonding characteristics. Photoluminescence (PL) and electron spin resonance (ESR) analyses revealed that the BiOBr/h-MoO3 heterojunction achieved optimal reactive oxygen species (ROS) production and minimized electron–hole recombination. Under optimized conditions (catalyst dosage: 10 mg L−1, TC concentration: 10 mg L−1, pH 10), the system attained 84% TC degradation within 60 min while maintaining 80% efficiency after five operational cycles. Mechanistic studies identified hydroxyl radicals (OH) and photogenerated holes (h+) as dominant active species, with OVs critically enhancing interfacial charge transfer efficiency. This work provides a viable strategy for constructing OV-engineered heterojunction photocatalysts for antibiotic wastewater treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Organometallic Chemistry
Applied Organometallic Chemistry 化学-无机化学与核化学
CiteScore
7.80
自引率
10.30%
发文量
408
审稿时长
2.2 months
期刊介绍: All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信