溶胶-凝胶驱动丝网印刷制备TiO2薄膜及其表征

IF 1.8 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
Kapil Kumar Sharma, Dhirendra Kumar Sharma, Sweta Shukla, Akansha Agrwal, Parvin Kumar, D. K. Dwivedi, R. A. Zargar, Monika Gupta, Pradeep Kumar, Vipin Kumar
{"title":"溶胶-凝胶驱动丝网印刷制备TiO2薄膜及其表征","authors":"Kapil Kumar Sharma,&nbsp;Dhirendra Kumar Sharma,&nbsp;Sweta Shukla,&nbsp;Akansha Agrwal,&nbsp;Parvin Kumar,&nbsp;D. K. Dwivedi,&nbsp;R. A. Zargar,&nbsp;Monika Gupta,&nbsp;Pradeep Kumar,&nbsp;Vipin Kumar","doi":"10.1134/S1063783424602285","DOIUrl":null,"url":null,"abstract":"<p>TiO<sub>2</sub> is a multifaceted and economical material for its appropriateness in various technical and scientific areas, including optoelectronics, photoelectrodes, and photocatalysis. This paper presents the fabrication and characterization of TiO<sub>2</sub> film deposited on a glass substrate by the sol–gel-driven screen-printing approach followed by sintering at 400°C. The fabricated TiO<sub>2</sub> film was analyzed via electrical resistivity measurement, UV-visible (transmission) spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The X-ray diffraction analysis exposed the emergence of a pure TiO<sub>2</sub> anatase phase with a favored orientation along the (101) direction. Scanning electron microscopy exhibits the distribution of nano-sized particles on the entire surface, whereas energy-dispersive X-ray spectroscopy approves the composition of Ti and O elements. The film shows an absorption band edge around 380 nm in the transmission spectrum corresponding to the direct bandgap of 3.25 eV for TiO<sub>2</sub>. Electrical resistivity unveiled the semiconducting nature of the film, having a resistivity of ⁓10<sup>5</sup> Ω cm. This study suggests the fabrication of TiO<sub>2</sub> film at a relatively low cost by a sol–gel-driven screen-printing approach for the potential use of these films in different technical and scientific areas.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"67 8","pages":"704 - 709"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sol–Gel Driven Screen-Printing Approach for the Fabrication of TiO2 Film and Its Characterization\",\"authors\":\"Kapil Kumar Sharma,&nbsp;Dhirendra Kumar Sharma,&nbsp;Sweta Shukla,&nbsp;Akansha Agrwal,&nbsp;Parvin Kumar,&nbsp;D. K. Dwivedi,&nbsp;R. A. Zargar,&nbsp;Monika Gupta,&nbsp;Pradeep Kumar,&nbsp;Vipin Kumar\",\"doi\":\"10.1134/S1063783424602285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>TiO<sub>2</sub> is a multifaceted and economical material for its appropriateness in various technical and scientific areas, including optoelectronics, photoelectrodes, and photocatalysis. This paper presents the fabrication and characterization of TiO<sub>2</sub> film deposited on a glass substrate by the sol–gel-driven screen-printing approach followed by sintering at 400°C. The fabricated TiO<sub>2</sub> film was analyzed via electrical resistivity measurement, UV-visible (transmission) spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The X-ray diffraction analysis exposed the emergence of a pure TiO<sub>2</sub> anatase phase with a favored orientation along the (101) direction. Scanning electron microscopy exhibits the distribution of nano-sized particles on the entire surface, whereas energy-dispersive X-ray spectroscopy approves the composition of Ti and O elements. The film shows an absorption band edge around 380 nm in the transmission spectrum corresponding to the direct bandgap of 3.25 eV for TiO<sub>2</sub>. Electrical resistivity unveiled the semiconducting nature of the film, having a resistivity of ⁓10<sup>5</sup> Ω cm. This study suggests the fabrication of TiO<sub>2</sub> film at a relatively low cost by a sol–gel-driven screen-printing approach for the potential use of these films in different technical and scientific areas.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":\"67 8\",\"pages\":\"704 - 709\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783424602285\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783424602285","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

二氧化钛是一种多用途且经济的材料,适用于光电子、光电极、光催化等各种技术和科学领域。本文采用溶胶-凝胶驱动的丝网印刷方法,在400°C下烧结,制备并表征了沉积在玻璃基板上的TiO2薄膜。通过电阻率测量、紫外-可见(透射)光谱、x射线衍射和能量色散x射线光谱对制备的TiO2薄膜进行了分析。x射线衍射分析表明,在(101)方向上出现了一个有利取向的纯TiO2锐钛矿相。扫描电镜显示了纳米级颗粒在整个表面的分布,而能量色散x射线光谱证实了Ti和O元素的组成。薄膜在透射光谱中有一个380 nm左右的吸收带边,对应TiO2的直接带隙为3.25 eV。电阻率揭示了薄膜的半导体性质,其电阻率为⁓105 Ω cm。这项研究表明,通过溶胶-凝胶驱动的丝网印刷方法以相对较低的成本制备TiO2薄膜,这些薄膜在不同的技术和科学领域具有潜在的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Sol–Gel Driven Screen-Printing Approach for the Fabrication of TiO2 Film and Its Characterization

A Sol–Gel Driven Screen-Printing Approach for the Fabrication of TiO2 Film and Its Characterization

A Sol–Gel Driven Screen-Printing Approach for the Fabrication of TiO2 Film and Its Characterization

TiO2 is a multifaceted and economical material for its appropriateness in various technical and scientific areas, including optoelectronics, photoelectrodes, and photocatalysis. This paper presents the fabrication and characterization of TiO2 film deposited on a glass substrate by the sol–gel-driven screen-printing approach followed by sintering at 400°C. The fabricated TiO2 film was analyzed via electrical resistivity measurement, UV-visible (transmission) spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The X-ray diffraction analysis exposed the emergence of a pure TiO2 anatase phase with a favored orientation along the (101) direction. Scanning electron microscopy exhibits the distribution of nano-sized particles on the entire surface, whereas energy-dispersive X-ray spectroscopy approves the composition of Ti and O elements. The film shows an absorption band edge around 380 nm in the transmission spectrum corresponding to the direct bandgap of 3.25 eV for TiO2. Electrical resistivity unveiled the semiconducting nature of the film, having a resistivity of ⁓105 Ω cm. This study suggests the fabrication of TiO2 film at a relatively low cost by a sol–gel-driven screen-printing approach for the potential use of these films in different technical and scientific areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Solid State
Physics of the Solid State 物理-物理:凝聚态物理
CiteScore
1.70
自引率
0.00%
发文量
60
审稿时长
2-4 weeks
期刊介绍: Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信