一步碲蚀刻法合成端碲MXene

IF 36.3 1区 材料科学 Q1 Engineering
Guoliang Ma, Zongbin Luo, Hui Shao, Yanbin Shen, Zifeng Lin, Patrice Simon
{"title":"一步碲蚀刻法合成端碲MXene","authors":"Guoliang Ma,&nbsp;Zongbin Luo,&nbsp;Hui Shao,&nbsp;Yanbin Shen,&nbsp;Zifeng Lin,&nbsp;Patrice Simon","doi":"10.1007/s40820-025-01875-1","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of two-dimensional MXene materials, numerous preparation strategies have been proposed to enhance synthesis efficiency, mitigate environmental impact, and enable scalability for large-scale production. The compound etching approach, which relies on cationic oxidation of the A element of MAX phase precursors while anions typically adsorb onto MXene surfaces as functional groups, remains the main prevalent strategy. By contrast, synthesis methodologies utilizing elemental etching agents have been rarely reported. Here, we report a new elemental tellurium (Te)-based etching strategy for the preparation of MXene materials with tunable surface chemistry. By selectively removing the A-site element in MAX phases using Te, our approach avoids the use of toxic fluoride reagents and achieves tellurium-terminated surface groups that significantly enhance sodium storage performance. Experimental results show that Te-etched MXene delivers substantially higher capacities (exceeding 50% improvement over conventionally etched MXene) with superior rate capability, retaining high capacity at large current densities and demonstrating over 90% capacity retention after 1000 cycles. This innovative synthetic strategy provides new insight into controllable MXene preparation and performance optimization, while the as-obtained materials hold promises for high-performance sodium-ion batteries and other energy storage systems.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01875-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Tellurium-Terminated MXene Synthesis via One-Step Tellurium Etching\",\"authors\":\"Guoliang Ma,&nbsp;Zongbin Luo,&nbsp;Hui Shao,&nbsp;Yanbin Shen,&nbsp;Zifeng Lin,&nbsp;Patrice Simon\",\"doi\":\"10.1007/s40820-025-01875-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid development of two-dimensional MXene materials, numerous preparation strategies have been proposed to enhance synthesis efficiency, mitigate environmental impact, and enable scalability for large-scale production. The compound etching approach, which relies on cationic oxidation of the A element of MAX phase precursors while anions typically adsorb onto MXene surfaces as functional groups, remains the main prevalent strategy. By contrast, synthesis methodologies utilizing elemental etching agents have been rarely reported. Here, we report a new elemental tellurium (Te)-based etching strategy for the preparation of MXene materials with tunable surface chemistry. By selectively removing the A-site element in MAX phases using Te, our approach avoids the use of toxic fluoride reagents and achieves tellurium-terminated surface groups that significantly enhance sodium storage performance. Experimental results show that Te-etched MXene delivers substantially higher capacities (exceeding 50% improvement over conventionally etched MXene) with superior rate capability, retaining high capacity at large current densities and demonstrating over 90% capacity retention after 1000 cycles. This innovative synthetic strategy provides new insight into controllable MXene preparation and performance optimization, while the as-obtained materials hold promises for high-performance sodium-ion batteries and other energy storage systems.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01875-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01875-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01875-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

随着二维MXene材料的快速发展,人们提出了许多制备策略来提高合成效率,减轻环境影响,并实现大规模生产的可扩展性。复合蚀刻方法仍然是主要的流行策略,它依赖于MAX相前驱体的A元素的阳离子氧化,而阴离子通常作为官能团吸附在MXene表面。相比之下,利用元素蚀刻剂的合成方法很少被报道。在这里,我们报告了一种新的元素碲(Te)基蚀刻策略,用于制备具有可调表面化学性质的MXene材料。通过使用Te选择性去除MAX相中的a位元素,我们的方法避免了使用有毒的氟化物试剂,并获得了显著提高钠储存性能的碲端表面基团。实验结果表明,te蚀刻的MXene具有更高的容量(比传统蚀刻的MXene提高了50%以上),具有优越的倍率能力,在大电流密度下保持高容量,并且在1000次循环后保持90%以上的容量。这种创新的合成策略为可控的MXene制备和性能优化提供了新的见解,而所获得的材料有望用于高性能钠离子电池和其他储能系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tellurium-Terminated MXene Synthesis via One-Step Tellurium Etching

With the rapid development of two-dimensional MXene materials, numerous preparation strategies have been proposed to enhance synthesis efficiency, mitigate environmental impact, and enable scalability for large-scale production. The compound etching approach, which relies on cationic oxidation of the A element of MAX phase precursors while anions typically adsorb onto MXene surfaces as functional groups, remains the main prevalent strategy. By contrast, synthesis methodologies utilizing elemental etching agents have been rarely reported. Here, we report a new elemental tellurium (Te)-based etching strategy for the preparation of MXene materials with tunable surface chemistry. By selectively removing the A-site element in MAX phases using Te, our approach avoids the use of toxic fluoride reagents and achieves tellurium-terminated surface groups that significantly enhance sodium storage performance. Experimental results show that Te-etched MXene delivers substantially higher capacities (exceeding 50% improvement over conventionally etched MXene) with superior rate capability, retaining high capacity at large current densities and demonstrating over 90% capacity retention after 1000 cycles. This innovative synthetic strategy provides new insight into controllable MXene preparation and performance optimization, while the as-obtained materials hold promises for high-performance sodium-ion batteries and other energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信