用Cu单原子位调制Fe原子簇的电子结构以增强氧还原反应

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jing Wu, Jian Rong, Wang-Yi Chen, Chao-Sheng Wang, Chu-Jun Feng, Huai-Sheng Ao, Cheng-Zhang Zhu, Yu-Zhe Zhang, Zhong-Yu Li
{"title":"用Cu单原子位调制Fe原子簇的电子结构以增强氧还原反应","authors":"Jing Wu,&nbsp;Jian Rong,&nbsp;Wang-Yi Chen,&nbsp;Chao-Sheng Wang,&nbsp;Chu-Jun Feng,&nbsp;Huai-Sheng Ao,&nbsp;Cheng-Zhang Zhu,&nbsp;Yu-Zhe Zhang,&nbsp;Zhong-Yu Li","doi":"10.1007/s12598-025-03342-7","DOIUrl":null,"url":null,"abstract":"<div><p>Regulating the electronic structure and oxygen-containing intermediates adsorption behavior on Fe-based catalysts is of great significance to cope with the sluggish oxygen reduction reaction (ORR) kinetics, but it still remains a great challenge. In this work, Fe atom clusters (Fe<sub>AC</sub>) modified by high-density Cu single atoms (Cu<sub>SA</sub>) in a N,S-doped porous carbon substrate (Fe<sub>AC</sub>/Cu<sub>SA</sub>@NCS) is reported for enhanced ORR electrocatalysis. Fe<sub>AC</sub>/Cu<sub>SA</sub>@NCS exhibits excellent ORR performance with a half-wave potential (<i>E</i><sub>1/2</sub>) of 0.911 V, a high four-electron process selectivity and excellent stability. The ORR performance is also verified in the Fe<sub>AC</sub>/Cu<sub>SA</sub>@NCS-based Zn-air battery, which shows a high peak power density of 192.67 mW cm<sup>−2</sup>, a higher specific capacity of 808.3 mAh g<sup>−1</sup> and impressive charge–discharge cycle stability. Moreover, density functional theory calculations show that Cu single atoms synergistically modulate the electronic structure Fe active atoms in Fe atomic clusters, reducing the energy barrier of the rate-determining step (i.e., <sup>*</sup>OH desorption) on Fe<sub>AC</sub>/Cu<sub>SA</sub>@NCS. This work provides an effective way to regulate the electronic structure of Fe-based catalysts and optimize their electrocatalytic activity based on the introduction of a second metal source.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 9","pages":"6279 - 6291"},"PeriodicalIF":11.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating electronic structure of Fe atomic cluster by Cu single-atom sites for enhanced oxygen reduction reaction\",\"authors\":\"Jing Wu,&nbsp;Jian Rong,&nbsp;Wang-Yi Chen,&nbsp;Chao-Sheng Wang,&nbsp;Chu-Jun Feng,&nbsp;Huai-Sheng Ao,&nbsp;Cheng-Zhang Zhu,&nbsp;Yu-Zhe Zhang,&nbsp;Zhong-Yu Li\",\"doi\":\"10.1007/s12598-025-03342-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Regulating the electronic structure and oxygen-containing intermediates adsorption behavior on Fe-based catalysts is of great significance to cope with the sluggish oxygen reduction reaction (ORR) kinetics, but it still remains a great challenge. In this work, Fe atom clusters (Fe<sub>AC</sub>) modified by high-density Cu single atoms (Cu<sub>SA</sub>) in a N,S-doped porous carbon substrate (Fe<sub>AC</sub>/Cu<sub>SA</sub>@NCS) is reported for enhanced ORR electrocatalysis. Fe<sub>AC</sub>/Cu<sub>SA</sub>@NCS exhibits excellent ORR performance with a half-wave potential (<i>E</i><sub>1/2</sub>) of 0.911 V, a high four-electron process selectivity and excellent stability. The ORR performance is also verified in the Fe<sub>AC</sub>/Cu<sub>SA</sub>@NCS-based Zn-air battery, which shows a high peak power density of 192.67 mW cm<sup>−2</sup>, a higher specific capacity of 808.3 mAh g<sup>−1</sup> and impressive charge–discharge cycle stability. Moreover, density functional theory calculations show that Cu single atoms synergistically modulate the electronic structure Fe active atoms in Fe atomic clusters, reducing the energy barrier of the rate-determining step (i.e., <sup>*</sup>OH desorption) on Fe<sub>AC</sub>/Cu<sub>SA</sub>@NCS. This work provides an effective way to regulate the electronic structure of Fe-based catalysts and optimize their electrocatalytic activity based on the introduction of a second metal source.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 9\",\"pages\":\"6279 - 6291\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-025-03342-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03342-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

调控电子结构和含氧中间体在铁基催化剂上的吸附行为对解决氧还原反应(ORR)动力学缓慢的问题具有重要意义,但仍是一个巨大的挑战。在这项工作中,高密度Cu单原子(CuSA)修饰的Fe原子团簇(FeAC)在N, s掺杂的多孔碳衬底(FeAC/CuSA@NCS)中用于增强ORR电催化。FeAC/CuSA@NCS具有优异的ORR性能,半波电位(E1/2)为0.911 V,具有高的四电子过程选择性和优异的稳定性。FeAC/CuSA@NCS-based锌空气电池的ORR性能也得到了验证,其峰值功率密度高达192.67 mW cm - 2,比容量高达808.3 mAh g - 1,充放电循环稳定性令人惊叹。此外,密度泛函理论计算表明,Cu单原子协同调节Fe原子簇中的Fe活性原子的电子结构,降低了FeAC/CuSA@NCS上速率决定步骤(即*OH脱附)的能量势垒。本研究为引入第二金属源调控铁基催化剂的电子结构和优化其电催化活性提供了有效途径。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulating electronic structure of Fe atomic cluster by Cu single-atom sites for enhanced oxygen reduction reaction

Regulating the electronic structure and oxygen-containing intermediates adsorption behavior on Fe-based catalysts is of great significance to cope with the sluggish oxygen reduction reaction (ORR) kinetics, but it still remains a great challenge. In this work, Fe atom clusters (FeAC) modified by high-density Cu single atoms (CuSA) in a N,S-doped porous carbon substrate (FeAC/CuSA@NCS) is reported for enhanced ORR electrocatalysis. FeAC/CuSA@NCS exhibits excellent ORR performance with a half-wave potential (E1/2) of 0.911 V, a high four-electron process selectivity and excellent stability. The ORR performance is also verified in the FeAC/CuSA@NCS-based Zn-air battery, which shows a high peak power density of 192.67 mW cm−2, a higher specific capacity of 808.3 mAh g−1 and impressive charge–discharge cycle stability. Moreover, density functional theory calculations show that Cu single atoms synergistically modulate the electronic structure Fe active atoms in Fe atomic clusters, reducing the energy barrier of the rate-determining step (i.e., *OH desorption) on FeAC/CuSA@NCS. This work provides an effective way to regulate the electronic structure of Fe-based catalysts and optimize their electrocatalytic activity based on the introduction of a second metal source.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信