Sara Bernardi, Paolo Begnamino, Marco Pizzi, Lamberto Rondoni
{"title":"流体分类的异常输运模型:来自实验驱动方法的见解","authors":"Sara Bernardi, Paolo Begnamino, Marco Pizzi, Lamberto Rondoni","doi":"10.1186/s11671-025-04297-5","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, research and development in nanoscale science and technology have grown significantly, with electrical transport playing a key role. A natural challenge for its description is to shed light on anomalous behaviours observed in a variety of low-dimensional systems. We use a synergistic combination of experimental and mathematical modelling to explore the transport properties of the electrical discharge observed within a micro-gap based sensor immersed in fluids with different insulating properties. Data from laboratory experiments are collected and used to inform and calibrate four mathematical models that comprise partial differential equations describing different kinds of transport, including anomalous diffusion: the Gaussian Model with Time Dependent Diffusion Coefficient, the Porous Medium Equation, the Kardar-Parisi-Zhang Equation and the Telegrapher Equation. Performance analysis of the models through data fitting reveals that the Gaussian Model with a Time-Dependent Diffusion Coefficient most effectively describes the observed phenomena. This model proves particularly valuable in characterizing the transport properties of electrical discharges when the micro-electrodes are immersed in a wide range of insulating as well as conductive fluids. Indeed, it can suitably reproduce a range of behaviours spanning from clogging to bursts, allowing accurate and quite general fluid classification. Finally, we apply the data-driven mathematical modeling approach to ethanol-water mixtures. The results show the model’s potential for accurate prediction, making it a promising method for analyzing and classifying fluids with unknown insulating properties.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04297-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Anomalous transport models for fluid classification: insights from an experimentally driven approach\",\"authors\":\"Sara Bernardi, Paolo Begnamino, Marco Pizzi, Lamberto Rondoni\",\"doi\":\"10.1186/s11671-025-04297-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, research and development in nanoscale science and technology have grown significantly, with electrical transport playing a key role. A natural challenge for its description is to shed light on anomalous behaviours observed in a variety of low-dimensional systems. We use a synergistic combination of experimental and mathematical modelling to explore the transport properties of the electrical discharge observed within a micro-gap based sensor immersed in fluids with different insulating properties. Data from laboratory experiments are collected and used to inform and calibrate four mathematical models that comprise partial differential equations describing different kinds of transport, including anomalous diffusion: the Gaussian Model with Time Dependent Diffusion Coefficient, the Porous Medium Equation, the Kardar-Parisi-Zhang Equation and the Telegrapher Equation. Performance analysis of the models through data fitting reveals that the Gaussian Model with a Time-Dependent Diffusion Coefficient most effectively describes the observed phenomena. This model proves particularly valuable in characterizing the transport properties of electrical discharges when the micro-electrodes are immersed in a wide range of insulating as well as conductive fluids. Indeed, it can suitably reproduce a range of behaviours spanning from clogging to bursts, allowing accurate and quite general fluid classification. Finally, we apply the data-driven mathematical modeling approach to ethanol-water mixtures. The results show the model’s potential for accurate prediction, making it a promising method for analyzing and classifying fluids with unknown insulating properties.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-025-04297-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-025-04297-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04297-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Anomalous transport models for fluid classification: insights from an experimentally driven approach
In recent years, research and development in nanoscale science and technology have grown significantly, with electrical transport playing a key role. A natural challenge for its description is to shed light on anomalous behaviours observed in a variety of low-dimensional systems. We use a synergistic combination of experimental and mathematical modelling to explore the transport properties of the electrical discharge observed within a micro-gap based sensor immersed in fluids with different insulating properties. Data from laboratory experiments are collected and used to inform and calibrate four mathematical models that comprise partial differential equations describing different kinds of transport, including anomalous diffusion: the Gaussian Model with Time Dependent Diffusion Coefficient, the Porous Medium Equation, the Kardar-Parisi-Zhang Equation and the Telegrapher Equation. Performance analysis of the models through data fitting reveals that the Gaussian Model with a Time-Dependent Diffusion Coefficient most effectively describes the observed phenomena. This model proves particularly valuable in characterizing the transport properties of electrical discharges when the micro-electrodes are immersed in a wide range of insulating as well as conductive fluids. Indeed, it can suitably reproduce a range of behaviours spanning from clogging to bursts, allowing accurate and quite general fluid classification. Finally, we apply the data-driven mathematical modeling approach to ethanol-water mixtures. The results show the model’s potential for accurate prediction, making it a promising method for analyzing and classifying fluids with unknown insulating properties.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.