一种促进铁单原子与g-C3N4电荷分离和转移的高效光催化体系

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuai-Qi Zhang, Chun-Ling Ruan, Mei-Yin Chen, Cheng-Xiang Li, Min Dai, Zhi-Hui Yin, Cheng-Zhen Meng, Feng-Ming Situ, Yu-Wei Wu, Chun Hu, Xue-Ci Xing, Dong-Ming Zhang, Fan Li
{"title":"一种促进铁单原子与g-C3N4电荷分离和转移的高效光催化体系","authors":"Shuai-Qi Zhang,&nbsp;Chun-Ling Ruan,&nbsp;Mei-Yin Chen,&nbsp;Cheng-Xiang Li,&nbsp;Min Dai,&nbsp;Zhi-Hui Yin,&nbsp;Cheng-Zhen Meng,&nbsp;Feng-Ming Situ,&nbsp;Yu-Wei Wu,&nbsp;Chun Hu,&nbsp;Xue-Ci Xing,&nbsp;Dong-Ming Zhang,&nbsp;Fan Li","doi":"10.1007/s12598-025-03352-5","DOIUrl":null,"url":null,"abstract":"<div><p>The introduction of metal single atoms (SAs) into semiconductors can effectively optimize their electronic configuration and enhance their photocatalytic properties. Therefore, it is crucial to clarify the corresponding principles and photocatalytic mechanisms for efficient and sustainable photocatalytic water remediation systems. Herein, a promising Fe single-atom photocatalyst (Fe<sub>SA</sub>-CN) is obtained by anchoring Fe SAs in graphitic carbon nitride using a simple calcination strategy. Characterization and experimental results indicate that the modification of Fe SAs not only introduces a doping energy level, but also changes the valence band position, which expands the light absorption range, enhances the reduction ability of photogenerated electrons, and improves the separation and transfer of photogenerated charge carriers. Subsequently, contaminants adsorbed on the Fe<sub>SA</sub>-CN surface trigger their oxidation removal by h<sup>+</sup>, and the H<sub>2</sub>O<sub>2</sub> generated via two-electron direct reductions is converted in situ into ·OH by self-Fenton reaction for the synergistic contaminant degradation. In summary, Fe<sub>SA</sub>-CN offers a promising pathway for single-atom photocatalysts in water remediation because of outstanding contamination removal efficiency, adaptability, and stability.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 9","pages":"6343 - 6353"},"PeriodicalIF":11.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A promoted charge separation and transfer system from Fe single atoms and g-C3N4 for efficient photocatalysis\",\"authors\":\"Shuai-Qi Zhang,&nbsp;Chun-Ling Ruan,&nbsp;Mei-Yin Chen,&nbsp;Cheng-Xiang Li,&nbsp;Min Dai,&nbsp;Zhi-Hui Yin,&nbsp;Cheng-Zhen Meng,&nbsp;Feng-Ming Situ,&nbsp;Yu-Wei Wu,&nbsp;Chun Hu,&nbsp;Xue-Ci Xing,&nbsp;Dong-Ming Zhang,&nbsp;Fan Li\",\"doi\":\"10.1007/s12598-025-03352-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The introduction of metal single atoms (SAs) into semiconductors can effectively optimize their electronic configuration and enhance their photocatalytic properties. Therefore, it is crucial to clarify the corresponding principles and photocatalytic mechanisms for efficient and sustainable photocatalytic water remediation systems. Herein, a promising Fe single-atom photocatalyst (Fe<sub>SA</sub>-CN) is obtained by anchoring Fe SAs in graphitic carbon nitride using a simple calcination strategy. Characterization and experimental results indicate that the modification of Fe SAs not only introduces a doping energy level, but also changes the valence band position, which expands the light absorption range, enhances the reduction ability of photogenerated electrons, and improves the separation and transfer of photogenerated charge carriers. Subsequently, contaminants adsorbed on the Fe<sub>SA</sub>-CN surface trigger their oxidation removal by h<sup>+</sup>, and the H<sub>2</sub>O<sub>2</sub> generated via two-electron direct reductions is converted in situ into ·OH by self-Fenton reaction for the synergistic contaminant degradation. In summary, Fe<sub>SA</sub>-CN offers a promising pathway for single-atom photocatalysts in water remediation because of outstanding contamination removal efficiency, adaptability, and stability.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 9\",\"pages\":\"6343 - 6353\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-025-03352-5\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03352-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在半导体中引入金属单原子(SAs)可以有效地优化半导体的电子构型,提高半导体的光催化性能。因此,明确相应的光催化原理和光催化机制对于构建高效、可持续的光催化水修复系统至关重要。本文采用简单的煅烧策略将Fe - sa固定在石墨化碳氮上,得到了一种很有前途的Fe单原子光催化剂(FeSA-CN)。表征和实验结果表明,Fe - SAs的修饰不仅引入了掺杂能级,而且改变了价带位置,扩大了光吸收范围,增强了光生电子的还原能力,改善了光生载流子的分离和转移。随后,吸附在FeSA-CN表面的污染物被h+氧化去除,双电子直接还原生成的H2O2通过自fenton反应原位转化为·OH,协同降解污染物。综上所述,FeSA-CN因其出色的污染去除效率、适应性和稳定性,为单原子光催化剂在水修复中提供了一种很有前途的途径。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A promoted charge separation and transfer system from Fe single atoms and g-C3N4 for efficient photocatalysis

The introduction of metal single atoms (SAs) into semiconductors can effectively optimize their electronic configuration and enhance their photocatalytic properties. Therefore, it is crucial to clarify the corresponding principles and photocatalytic mechanisms for efficient and sustainable photocatalytic water remediation systems. Herein, a promising Fe single-atom photocatalyst (FeSA-CN) is obtained by anchoring Fe SAs in graphitic carbon nitride using a simple calcination strategy. Characterization and experimental results indicate that the modification of Fe SAs not only introduces a doping energy level, but also changes the valence band position, which expands the light absorption range, enhances the reduction ability of photogenerated electrons, and improves the separation and transfer of photogenerated charge carriers. Subsequently, contaminants adsorbed on the FeSA-CN surface trigger their oxidation removal by h+, and the H2O2 generated via two-electron direct reductions is converted in situ into ·OH by self-Fenton reaction for the synergistic contaminant degradation. In summary, FeSA-CN offers a promising pathway for single-atom photocatalysts in water remediation because of outstanding contamination removal efficiency, adaptability, and stability.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信