核壳CoPt@C通过ch4沉积策略组装分级催化剂,实现高效的整体水分解

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zi-Ya Li, De-Ling Wang, Chao Zhang, Hai-Peng Wang, De-Lu Zhang, Gao-Qiang Zhao, Zhi-Guo Lv, Fu-Jin Sun
{"title":"核壳CoPt@C通过ch4沉积策略组装分级催化剂,实现高效的整体水分解","authors":"Zi-Ya Li,&nbsp;De-Ling Wang,&nbsp;Chao Zhang,&nbsp;Hai-Peng Wang,&nbsp;De-Lu Zhang,&nbsp;Gao-Qiang Zhao,&nbsp;Zhi-Guo Lv,&nbsp;Fu-Jin Sun","doi":"10.1007/s12598-025-03345-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study, a core–shell CoPt@C assembled hierarchical catalyst (named CoPt@C) was prepared using a unique CH<sub>4</sub> deposition strategy for highly efficient overall water splitting. CoPt@C is composed of dense CoPt@C core–shell nanoparticles (NPs) and a minor proportion of curled CoPt@nanotubes (CoPt@CNTs). Moreover, by adjusting the CH<sub>4</sub> deposition time, the carbon shell thickness can be effectively regulated. Benefiting from the synergistic interaction between CoPt alloy and carbon shell, coupled with the high conductivity of the carbon shell, the overpotential of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for CoPt@C is 15 and 120 mV at 10 mA cm<sup>−2</sup>. In addition, CoPt@C requires only 1.58 V to achieve 10 mA cm<sup>−2</sup> for overall water splitting and maintains excellent stability over 80 h of continuous electrolysis. Density functional theory (DFT) calculations suggest that electrons transfer from the CoPt alloy NPs to the carbon shell, rendering the carbon shell electron-rich. Additionally, the hydrogen adsorption energy (Δ<i>G</i><sub>*H</sub>) and the rate-determining step (Δ<i>G</i><sub>*OOH</sub>) on CoPt@C are only −0.22 and 1.9 eV, respectively.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 9","pages":"6232 - 6245"},"PeriodicalIF":11.0000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Core–shell CoPt@C assembled hierarchical catalysts via CH4-deposition strategy for efficient overall water splitting\",\"authors\":\"Zi-Ya Li,&nbsp;De-Ling Wang,&nbsp;Chao Zhang,&nbsp;Hai-Peng Wang,&nbsp;De-Lu Zhang,&nbsp;Gao-Qiang Zhao,&nbsp;Zhi-Guo Lv,&nbsp;Fu-Jin Sun\",\"doi\":\"10.1007/s12598-025-03345-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study, a core–shell CoPt@C assembled hierarchical catalyst (named CoPt@C) was prepared using a unique CH<sub>4</sub> deposition strategy for highly efficient overall water splitting. CoPt@C is composed of dense CoPt@C core–shell nanoparticles (NPs) and a minor proportion of curled CoPt@nanotubes (CoPt@CNTs). Moreover, by adjusting the CH<sub>4</sub> deposition time, the carbon shell thickness can be effectively regulated. Benefiting from the synergistic interaction between CoPt alloy and carbon shell, coupled with the high conductivity of the carbon shell, the overpotential of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for CoPt@C is 15 and 120 mV at 10 mA cm<sup>−2</sup>. In addition, CoPt@C requires only 1.58 V to achieve 10 mA cm<sup>−2</sup> for overall water splitting and maintains excellent stability over 80 h of continuous electrolysis. Density functional theory (DFT) calculations suggest that electrons transfer from the CoPt alloy NPs to the carbon shell, rendering the carbon shell electron-rich. Additionally, the hydrogen adsorption energy (Δ<i>G</i><sub>*H</sub>) and the rate-determining step (Δ<i>G</i><sub>*OOH</sub>) on CoPt@C are only −0.22 and 1.9 eV, respectively.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 9\",\"pages\":\"6232 - 6245\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-025-03345-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03345-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用独特的CH4沉积策略制备了一种核壳CoPt@C组装级联催化剂(命名为CoPt@C),用于高效的整体水分解。CoPt@C由致密的CoPt@C核壳纳米粒子(NPs)和少量卷曲的CoPt@nanotubes (CoPt@CNTs)组成。此外,通过调整CH4沉积时间,可以有效调节碳壳厚度。得益于CoPt合金与碳壳的协同作用,再加上碳壳的高导电性,CoPt@C在10 mA cm−2下析氢反应(HER)和析氧反应(OER)的过电位分别为15和120 mV。此外,CoPt@C只需要1.58 V就可以实现10 mA cm−2的整体水分解,并在80小时的连续电解中保持出色的稳定性。密度泛函理论(DFT)计算表明,电子从CoPt合金NPs转移到碳壳层,使碳壳层富含电子。此外,在CoPt@C上的氢吸附能(ΔG*H)和速率决定步长(ΔG*OOH)分别仅为−0.22和1.9 eV。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Core–shell CoPt@C assembled hierarchical catalysts via CH4-deposition strategy for efficient overall water splitting

This study, a core–shell CoPt@C assembled hierarchical catalyst (named CoPt@C) was prepared using a unique CH4 deposition strategy for highly efficient overall water splitting. CoPt@C is composed of dense CoPt@C core–shell nanoparticles (NPs) and a minor proportion of curled CoPt@nanotubes (CoPt@CNTs). Moreover, by adjusting the CH4 deposition time, the carbon shell thickness can be effectively regulated. Benefiting from the synergistic interaction between CoPt alloy and carbon shell, coupled with the high conductivity of the carbon shell, the overpotential of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for CoPt@C is 15 and 120 mV at 10 mA cm−2. In addition, CoPt@C requires only 1.58 V to achieve 10 mA cm−2 for overall water splitting and maintains excellent stability over 80 h of continuous electrolysis. Density functional theory (DFT) calculations suggest that electrons transfer from the CoPt alloy NPs to the carbon shell, rendering the carbon shell electron-rich. Additionally, the hydrogen adsorption energy (ΔG*H) and the rate-determining step (ΔG*OOH) on CoPt@C are only −0.22 and 1.9 eV, respectively.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信