铒对钆铁石榴石结构、磁性和介电性能的影响

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sonali S. Jadhav , Rameshwar B. Borade , S.B. Kadam , Akash V. Fulari , Ankush B. Kadam
{"title":"铒对钆铁石榴石结构、磁性和介电性能的影响","authors":"Sonali S. Jadhav ,&nbsp;Rameshwar B. Borade ,&nbsp;S.B. Kadam ,&nbsp;Akash V. Fulari ,&nbsp;Ankush B. Kadam","doi":"10.1016/j.mseb.2025.118682","DOIUrl":null,"url":null,"abstract":"<div><div>Erbium-doped gadolinium iron garnet (Er-GIG) nanoparticles were synthesized via the sol–gel auto-combustion method and sintered at 1150 °C for 10 h. XRD with Rietveld refinement confirmed a single-phase cubic garnet structure (space group <em>Ia-</em><span><math><mover><mrow><mn>3</mn></mrow><mrow><mo>¯</mo></mrow></mover></math></span><em>d</em>), with decreasing lattice parameter and increasing crystallite size (15.56 – 20.47  nm) as Er content increased (x = 0.0 – 2.0). Structural distortion due to the smaller Er<sup>3+</sup> ions is evident in FTIR and Raman spectra. Density measurements revealed improved densification, while FE-SEM and HR-TEM analyses showed grain growth (104 – 204  nm). Magnetic measurements indicated enhanced saturation magnetization and reduced coercivity with Er substitution. Dielectric studies exhibited frequency-dependent behavior consistent with the Maxwell–Wagner model. The simultaneous improvement in magnetic and dielectric properties is attributed to Er-induced lattice distortion, cation redistribution, and strengthened Fe<sup>3+</sup>– O<sup>2-</sup> –Fe<sup>3+</sup> super-exchange interactions. These microstructural and electronic modifications make Er-GIG a promising candidate for applications in magnetic sensors and electronic devices.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"323 ","pages":"Article 118682"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erbium-Induced modifications in the structural, magnetic, and dielectric properties of gadolinium iron garnet\",\"authors\":\"Sonali S. Jadhav ,&nbsp;Rameshwar B. Borade ,&nbsp;S.B. Kadam ,&nbsp;Akash V. Fulari ,&nbsp;Ankush B. Kadam\",\"doi\":\"10.1016/j.mseb.2025.118682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Erbium-doped gadolinium iron garnet (Er-GIG) nanoparticles were synthesized via the sol–gel auto-combustion method and sintered at 1150 °C for 10 h. XRD with Rietveld refinement confirmed a single-phase cubic garnet structure (space group <em>Ia-</em><span><math><mover><mrow><mn>3</mn></mrow><mrow><mo>¯</mo></mrow></mover></math></span><em>d</em>), with decreasing lattice parameter and increasing crystallite size (15.56 – 20.47  nm) as Er content increased (x = 0.0 – 2.0). Structural distortion due to the smaller Er<sup>3+</sup> ions is evident in FTIR and Raman spectra. Density measurements revealed improved densification, while FE-SEM and HR-TEM analyses showed grain growth (104 – 204  nm). Magnetic measurements indicated enhanced saturation magnetization and reduced coercivity with Er substitution. Dielectric studies exhibited frequency-dependent behavior consistent with the Maxwell–Wagner model. The simultaneous improvement in magnetic and dielectric properties is attributed to Er-induced lattice distortion, cation redistribution, and strengthened Fe<sup>3+</sup>– O<sup>2-</sup> –Fe<sup>3+</sup> super-exchange interactions. These microstructural and electronic modifications make Er-GIG a promising candidate for applications in magnetic sensors and electronic devices.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"323 \",\"pages\":\"Article 118682\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725007068\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725007068","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用溶胶-凝胶自燃烧法合成掺铒钆铁石榴石(Er- gig)纳米颗粒,并在1150℃下烧结10 h。Rietveld细化XRD证实其为单相立方石榴石结构(空间群Ia-3¯d),随着Er含量的增加(x = 0.0 ~ 2.0),晶格参数减小,晶粒尺寸增大(15.56 ~ 20.47 nm)。较小的Er3+离子引起的结构畸变在FTIR和拉曼光谱中很明显。密度测量显示致密化改善,而FE-SEM和HR-TEM分析显示晶粒生长(104 - 204 nm)。磁测量表明,铒取代增强了饱和磁化强度,降低了矫顽力。电介质研究表现出与麦克斯韦-瓦格纳模型一致的频率依赖行为。由于铒诱导的晶格畸变、阳离子重分布以及Fe3+ - O2- - Fe3+超交换相互作用的增强,使得材料的磁性和介电性能同时得到改善。这些微观结构和电子修饰使Er-GIG成为磁性传感器和电子设备应用的有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Erbium-Induced modifications in the structural, magnetic, and dielectric properties of gadolinium iron garnet
Erbium-doped gadolinium iron garnet (Er-GIG) nanoparticles were synthesized via the sol–gel auto-combustion method and sintered at 1150 °C for 10 h. XRD with Rietveld refinement confirmed a single-phase cubic garnet structure (space group Ia-3¯d), with decreasing lattice parameter and increasing crystallite size (15.56 – 20.47  nm) as Er content increased (x = 0.0 – 2.0). Structural distortion due to the smaller Er3+ ions is evident in FTIR and Raman spectra. Density measurements revealed improved densification, while FE-SEM and HR-TEM analyses showed grain growth (104 – 204  nm). Magnetic measurements indicated enhanced saturation magnetization and reduced coercivity with Er substitution. Dielectric studies exhibited frequency-dependent behavior consistent with the Maxwell–Wagner model. The simultaneous improvement in magnetic and dielectric properties is attributed to Er-induced lattice distortion, cation redistribution, and strengthened Fe3+– O2- –Fe3+ super-exchange interactions. These microstructural and electronic modifications make Er-GIG a promising candidate for applications in magnetic sensors and electronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信