M, N, H

IF 0.5 4区 数学 Q3 MATHEMATICS
Will Brian , Alan Dow , Klaas Pieter Hart
{"title":"M, N, H","authors":"Will Brian ,&nbsp;Alan Dow ,&nbsp;Klaas Pieter Hart","doi":"10.1016/j.topol.2025.109539","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>M</mi><mo>=</mo><mi>N</mi><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. The natural projection <span><math><mi>π</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>N</mi></math></span>, which sends <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> to <em>n</em>, induces a projection mapping <span><math><msup><mrow><mi>π</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>→</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, where <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> denote the Čech-Stone remainders of <span><math><mi>M</mi></math></span> and <span><math><mi>N</mi></math></span>, respectively.</div><div>We show that <span><math><mi>CH</mi></math></span> implies every autohomeomorphism of <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> lifts through the natural projection to an autohomeomorphism of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. That is, for every homeomorphism <span><math><mi>h</mi><mo>:</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>→</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> there is a homeomorphism <span><math><mi>H</mi><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> such that <span><math><msup><mrow><mi>π</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∘</mo><mi>H</mi><mo>=</mo><mi>h</mi><mo>∘</mo><msup><mrow><mi>π</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. This complements a recent result of the second author, who showed that this lifting property is not a consequence of <span><math><mi>ZFC</mi></math></span>.</div><div>Combining this lifting theorem with a recent result of the first author, we also prove that <span><math><mi>CH</mi></math></span> implies there is an order-reversing autohomeomorphism of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, the Čech-Stone remainder of the half line <span><math><mi>H</mi><mo>=</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109539"},"PeriodicalIF":0.5000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M⁎, N⁎, and H⁎\",\"authors\":\"Will Brian ,&nbsp;Alan Dow ,&nbsp;Klaas Pieter Hart\",\"doi\":\"10.1016/j.topol.2025.109539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>M</mi><mo>=</mo><mi>N</mi><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. The natural projection <span><math><mi>π</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>N</mi></math></span>, which sends <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> to <em>n</em>, induces a projection mapping <span><math><msup><mrow><mi>π</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>→</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, where <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> denote the Čech-Stone remainders of <span><math><mi>M</mi></math></span> and <span><math><mi>N</mi></math></span>, respectively.</div><div>We show that <span><math><mi>CH</mi></math></span> implies every autohomeomorphism of <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> lifts through the natural projection to an autohomeomorphism of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. That is, for every homeomorphism <span><math><mi>h</mi><mo>:</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>→</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> there is a homeomorphism <span><math><mi>H</mi><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> such that <span><math><msup><mrow><mi>π</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∘</mo><mi>H</mi><mo>=</mo><mi>h</mi><mo>∘</mo><msup><mrow><mi>π</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. This complements a recent result of the second author, who showed that this lifting property is not a consequence of <span><math><mi>ZFC</mi></math></span>.</div><div>Combining this lifting theorem with a recent result of the first author, we also prove that <span><math><mi>CH</mi></math></span> implies there is an order-reversing autohomeomorphism of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, the Čech-Stone remainder of the half line <span><math><mi>H</mi><mo>=</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"373 \",\"pages\":\"Article 109539\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125003372\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125003372","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让M = N×[0,1]。自然投影π:M→N,将(N, x)发送到N,推导出一个投影映射π:M→N,其中M和N分别表示M和N的Čech-Stone余数。我们证明了CH暗示了N的每一个自同胚通过自然投影提升到M的一个自同胚。也就是说,对于每一个同胚h:N→N,都存在一个h: M→M使得π°h =h°π。这补充了第二作者最近的一个结果,他表明这种提升特性不是ZFC的结果。结合这个提升定理和第一作者最近的一个结果,我们还证明了CH暗示H的一个序反转自同胚,H的半线H=[0,∞]的Čech-Stone余数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
M⁎, N⁎, and H⁎
Let M=N×[0,1]. The natural projection π:MN, which sends (n,x) to n, induces a projection mapping π:MN, where M and N denote the Čech-Stone remainders of M and N, respectively.
We show that CH implies every autohomeomorphism of N lifts through the natural projection to an autohomeomorphism of M. That is, for every homeomorphism h:NN there is a homeomorphism H:MM such that πH=hπ. This complements a recent result of the second author, who showed that this lifting property is not a consequence of ZFC.
Combining this lifting theorem with a recent result of the first author, we also prove that CH implies there is an order-reversing autohomeomorphism of H, the Čech-Stone remainder of the half line H=[0,).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信